M1 Suspended Sediment Monitoring Plan

Aim and Objective

The purpose of M-1 Suspended Sediment Monitoring Plan (SSMP) is to implement a regular monitoring program that meets operational needs and permitting requirements for the project and to ensure that the suspended solid concentrations in water are maintained at a safe level, suitable for use by local villages. Monitoring data will be collated and used to establish, and where needed refine, performance targets for the concentration of suspended solids, assess the performance of the mitigation measures, and support adaptive management. Where monitoring data are deemed insufficient to identify the cause of elevated suspended solids in water, this plan will be revised and improved.

The SSMP will be implemented in parallel with M-2 Water Quality Monitoring Plan (WQMP).

Summary of Impacts and Risks

Water quality of the Tina River and downstream Ngalimbiu River is a central issue for local villages. Project support and acceptance by the local villages depends on the capability of the Project to maintain high water quality downstream. A typical indicator of water guality is Total Suspended Solids (TSS), which is the guantity of suspended particles and is also correlated with turbidity.

Project-related activities during construction that may impact TSS and turbidity includes but is not limited to: vegetation clearance; excavation and blasting of roads, the dam site other project infrastructure; road gravelling, sealing and maintenance; aggregate extraction; spoil stockpiling; inadequate erosion and sediment control; wastewater generation; and the accidental discharge of chemicals. Non-project impacts that may also impact TSS and turbidity within the Tina River includes; heavy rainfall and extreme weather events; timber harvesting in middle and upper catchment; domestic activities by local villages; algal blooms; and downstream activities such as agriculture, palm oil, and gravel extraction.

The Tina River exhibits natural peaks in TSS and turbidity during heavy rains. During construction, the river may also be exposed to intermittent, additional sediment-laden run-off from cleared areas and works undertaken by the Project, which may affect water quality. Monitoring TSS and turbidity will enable estimation of siltation rates and provide data on TSS peaks. Monitoring may also assist with the resolution of any potential disputes that arise within the villages to determine natural versus project-related sources of suspended solids. Appropriate management largely relies on regular, comprehensive sampling of water, with comparison against international standards (thresholds and trigger values), with provision and implementation of effective and adequate mitigation measures.

Mitigation of	Aitigation and Management Actions							
#	Issue or Risk	Action	Timing / Frequency	Responsibility				
M-1-1.	Discharge of sediment and contaminants from construction activities	Implementation of management actions specified in the other ESMPs, particularly P-12 Waste Management and Point Source Pollution Plan; P-13 Hazardous Materials Management Plan; P-14 Spill Prevention and Emergency Response Plan; C-8 Watercourse Crossing Management Plan; C-9 Spoil and Topsoil Management Plan; and C-10 Drainage, Erosion and Sediment Control Plan.	Throughout construction	HEC Construction Manager HEC EHS Manager				

Monitoring	ionitoring Requirements							
#	Title	Description	Target / Performance Indicator	Timing / Frequency ¹	Responsibility			
M-1-A.	Surface water quality monitoring	 Monitoring for TSS and turbidity will be undertaken at six sampling stations (A-E) alor as shown in Annex M-1-I. A single sample from a representative location in or near depth of 10-20 cm from the water surface. At each site, measurements or samples will be taken for TSS and turbidity, as per An Once per month, TSS samples will be collected in 500 mL plastic (PE) bottles for of Once per week, turbidity will be measured <i>in situ</i> using a hand-held probe, target and low flows, rain and non-rain events. More frequent (daily) turbidity monitoring will be conducted following spill even investigate the event and inform remedial actions to be taken. 	Water quality trigger values have been set based on the results of baseline monitoring and international research. ³ Turbidity 15.0 NTU TSS 300 mg/L	Weekly (NTU field) Monthly (TSS lab) Daily sampling following spill events or complaints, until water quality has returned to background levels. Reported in the quarterly E&S monitoring report including photos.	HEC E&S Supervisor			
M-1-B.	Erosion and sediment control and water treatment devices monitoring	 Monitoring for <i>in situ</i> turbidity will be undertaken at four sampling locations (ST1-ST4) the access road and at one location downstream of spoil disposal sites 2, 3, and 5 (Monitoring for <i>in situ</i> turbidity will be undertaken at the discharge location for other v e.g. wheel wash bay, concrete batching plant, aggregate crusher/washing plant, 	Turbidity 15.0 NTU	Monthly throughout construction Reported in quarterly E&S monitoring report	HEC E&S Supervisor			
M-1-C.	Treated wastewater quality monitoring	 Monitoring for TSS of the treated effluent from the wastewater treatment plant at th Refer to M-2 Water Quality Monitoring Plan for additional water quality parameters 	IFC EHS guidelines for treated sanitary sewage: TSS 50 mg/L	Monthly throughout construction Reported in quarterly E&S monitoring report	HEC E&S Supervisor			
M-1-D.	Sedimentation monitoring	Monitoring of sediment loads (TSS) in the river during normal flows and flood flows at in accordance with Section 4.2 and Appendix 10 of the Investigation of Discharge of	t two locations (A and B) with three replicates and Sediment Load report (Annex M-1-IV).	Monitoring completed and included in quarterly E&S reports	Weekly during regular flows & floods >200m ³ /s Reported in quarterly E&S monitoring report	HEC E&S Supervisor		
Supporting	Documents		-					
Annex	Name		Description					
M-1-I.	Water quality monitoring l	ocations for TSS and turbidity	Locations of sampling sites on the Tina River and along the access road.					
M-1-II.	Sampling methods		Sampling methods and equipment for TSS and turbidity analysis.					
M-1-III.	SPE monitoring and report	ing	Sampling parameters and reporting requirements from the subcontractor undertaking water quality sampling under M-1 and M-2.					
M-1-IV.	Investigation of Discharge	and Sediment Load	Report "Investigation of Discharge and Sedir	ment Load" prepared by HEC, dated	15 December 2022.			

¹ Water quality monitoring has been undertaken at varying frequencies to date. The contractor has found that monthly monitoring is achievable and practical, while weekly monitoring is not. Monthly is considered suitable for a long-term monitoring programme. ² Commercial laboratory to be approved by THL/OE. Note that at present there is no accredited laboratory in the Solomon Islands.

³ Default trigger values for upland and lowland rivers from the Queensland Water Quality Guidelines 2009, dated 2013 (https://environment.des.qld.gov.au/management/water/quality-guidelines); EPA Suspended Sediment Effects on Fish: A Literature Review (https://www.epa.gov/sites/default/files/documents/mrsboappa.pdf); Servizi, J.A. and Martens, J.A. (1992) Sublethal Responses of Coho Salmon (Oncorhynchus kisutch) to Suspended Sediments, Canadian Journal of Fisheries and Aquatic Sciences, Vol. 49: 1389-1395.

ANNEX M-1-I WATER QUALITY MONITORING LOCATIONS FOR TSS AND TURBIDITY

Water Quality Monitoring Locations

Tina River and Toni River Monitoring Sites

Site	ID	Location	GPS Coordinates
А	A2	Within reservoir / Upstream of dam and all construction activity (M)	9°33'33.48''S, 160° 3'23.13''E
В	B2	100m downstream toe of dam (M)	9°33'28.53''S, 160° 3'38.63''E
C*	C2*	Upstream of the powerhouse (M)	9°32'44.83''S, 160° 5'4.88''E
С	C2	Immediately downstream of the powerhouse (M)	9°32'33.30''S, 160° 5'1.00''E
D	D2	At Vuramali, approximately 10 km downstream of the dam (M)	9°30'22.21"S, 160° 7'17.31"E
Е	E2	At Ngalimbiu bridge, approximately 20km downstream of the dam (M)	9°27'17.90''S, 160° 8'43.10''E
F	F	Toni River upstream of confluence with Tina River. Same as M-3 site 8.	9°31'25.14''S, 160° 7'26.94''E

Should landowners prevent access to Site E this monitoring site can be moved downstream to M-3 site 10.

Erosion and Sediment Control Monitoring Sites

Site	Location	GPS Coordinates
ST1	Sediment trap located adjacent to Lot 2-3	9°33'22.98"S, 160° 3'30.65"E
ST2	Sediment trap located adjacent to Lot 2-2	9°33'13.38''S, 160° 4'10.14''E
ST3	Sediment trap located adjacent to Lot 3-2	9°32'45.00''S, 160° 4'10.74''E
ST4	Confluence below Spoil Disposal Sites 2,3 and 5	9°31'18.84''S, 160° 4'37.45''E

Wastewater Treatment Plant

Site	Location	GPS Coordinates
WWTP	Workers Accommodation Camp wastewater treatment plant outlet	9°28'11.68''S, 160° 6'14.78''E

Google Earth Map of Monitoring Sites

ANNEX M-1-II SAMPLING METHODS

MONITORING AND EVALUATION

3.1 MONITORING

Monitoring requirements for the construction phase include, at a minimum, the requirements provided in Table 3.1.

Item	Campaign Requirements		
Stations	Suspended sediment sample collection and <i>in situ</i> measurements will be conducted at the following river locations:		
	 will be conducted at the following river locations: 1) Within the reservoir/ Upstream of Dam- Site A (these were monitored during the baseline upstream reservoir); 2) Immediately downstream of the toe of the dam (will be moved 100m downstream during Dam construction or main works to have a better representative sampling)- Site B; 3) Upstream of the powerhouse - Site C*; 4) Immediately downstream of the powerhouse- Site C; 5) At Vuramali, approximately 10 km downstream of the dam-Site D; and 6) At Ngalimbiu Bridge, approximately 20 km downstream of dam-Site E. 7) Toni River confluence - Site F (aka M-3 Site 8) The locations selected for suspended sediment sampling during the construction phase are the same locations used for water sampling (M-2). The location for this monitoring should target river section that is expected to be well-mixed and have stable river bed/banks. Besides the sampling stations provided above, the final discharge points of 4 sediment traps (STP1-4) and the treated sewage effluent at Works Camp (WWTP) need to be monitored for suspended to addiment in ander to datevariae the afficiency of the semanded and the semanded is a final and the semanded is a final and the semanded for the datevariae to datevariae. 		
	sediment traps and sewage treatment plant respectively. Other water treatment devices installed during construction will also be monitored.		

Table 3.1: Suspended sediment sampling campaign during construction

Time of the Year	Water quality monitoring will be conducted at least once per month throughout the year.
Sampling Method	At each of the six river water sampling locations, suspended sediment water samples will be collected in or near the centre of the river. At each sampling position along the imaginary transect line, water sampling or measurement shall be conducted at a depth of 10-20 cm from the surface. Water samples for suspended solids shall be collected in 500ml plastic (PE) bottles without any preservatives. The same water sample in which suspended solids will be measured will also be used to measure the turbidity <i>in situ</i> or on site. TSS will be measured in the laboratory using a Filtration/Gravimetric Method, EPA Approved Method. In addition to laboratory determination, watercolour shall also be assessed <i>in situ</i> through photography.
	During the collection of water samples at the six river water sampling locations, the in situ samples for TSS and turbidity will be collected and measured first before other parameters. This is to prevent disturbance of the riverbed, contamination of the results of TSS in the laboratory and in situ turbidity results. If disturbance to the riverbed occurs prior to collecting the in-situ samples for TSS and turbidity, hold off on collecting the sample until sufficient time and flow has passed and the stream is clear.
	Sample bottles are dipped into stream flow either by hand or at the end of a sampling pole. During flood events or at sites where it is difficult to collect samples by hand, reusable 1-litre bailers will be used to collect water samples. Bailers will be thrown into the river body with a rope attached at one end, will sink into the river body and the collected sample volume will be retrieved and assessed and stored. Sample bottles are sealed, labelled, and placed into a cooler. Where required by the analytical laboratory, samples will be kept in the dark and at a stable cold temperature with ice.
	For the collection of sediment traps and treated sewage effluent sample(s), sample bottle(s) are held by hand at the final discharge point to collect water samples. Where it is difficult to collect samples

	by hand, reusable 1-L bailers will be used to collect water samples. The collected sample volume will be retrieved, assessed and stored. Sample bottles are sealed, labelled, and placed into a cooler. Where required by the analytical laboratory, samples will be kept in the dark
	and at a stable cold temperature with ice. Sampling personnel to wear non-powdered disposable gloves, preferably nitrile (if nitrile gloves are unavailable, sterile gloves from a commercially packaged box will be acceptable). The use of disposable gloves will reduce the risk of cross-contamination of
	samples. A blank sample will be used in the laboratory to assess accuracy.
	A hand-held water probe instrument will be used to take an <i>in-situ</i> measurement of turbidity. Triplicate measurements will be recorded.
	Note weather conditions and abnormal site observations during sampling at the sampling points and in the vicinity. This observation will be used to justify the sampling results.
Calibration Method	The manufacturers of turbidity sensors will recommend which solutions or standards are approved for successful calibration and these approved solutions are the only ones that should be used.
	In addition, some manufacturers, have turbidity solutions that are specifically made for the instrumentation they provide.
	HEC will be responsible to procure or prepare the necessary solutions.
	Instruments come with their own calibration kits/standard solutions. Calibrations will be conducted in the field just before measurements are taken.
	Suspended solids will be measured using Laboratory based Filtration/Gravimetric Method, an EPA Approved Method.
Effort per Monitoring Event	Sampling results to be recorded and samples appropriately stored within 24h for laboratory analysis completion.
	Data from hand held turbidity probe will be recorded in field logs and backed up electronically.

Frequency	Suspended solids monitoring will be conducted at least once per month. Additional sampling will be conducted following rainfall events and spill events.			
Data collation	Historical series to be maintained available for statistical analysis. Data to be presented in tabular and graphical form.			
Analysis	 Correlation between TSS and turbidity Turbidity and total suspended solids exhibit correlation in water samples and may be used to indirectly measures vectors for heavy metal contamination. Mostly, simple relationships are reported: <i>TSS = m Turbidity (NTU)</i>. Correlation of average TSS concentrations from water samples and average turbidity (NTU) measurements from handheld probe will be analysed by simple linear regression. Correlation between TSS and flow measured at the gauging station From the continuous records obtained at the station, hydrologists can make predictions and decisions concerning water flow measurement changing and implement mitigation measures if required. Comparison of peaks of TSS during construction work with those observed in natural conditions Construction activities may also alter downstream flow and sediment volumes, timing, predictability, and flow change rates, which, together with temperature, water clarity, and other water quality changes, can alter species composition and relative abundance, and can disrupt flow-related cues that trigger important fish life history milestones such as migration or spawning. Naturally, a river experiments peak in TSS during the different seasons (dry and wet) hence the importance to obtain a robust baseline to distinguish TSS construction works from natural baseline conditions. 			
Reporting	Data shall be reported in HEC monthly and quarterly E&S reports			

The following table specifies the minimum equipment and protocol to conduct the sampling activities.

Table 3.2: Analytical methods and sampling methodology of surface water monitoring.

Parameter	Width (cm)	Height (cm)	Campaign Requirements	
TSS	14	8	PE Plastic Bottle 500 ml. Rinse bottles by sampling water for 2 times, fill bottle with sampling water without slop (bottleneck is fine), tightly close the bottle and put in a zip lock bag and seal tightly.	
			filter paper followed by Gravimetric determination after drying at 105 °C.	
Turbidity			Hand held water probe for turbidity measurement (Note: some models are multi-parameter probe which may also serve the water quality monitoring). HEC currently has a handheld EUTECH TN100 turbidimeter with a detection limit of 0.02 NTU. Example:	

Parameter	Width (cm)	Height (cm)	Campaign Requirements
			observed to rain every two days and would cause frequent flooding. This would create a confusion problem, particularly with the data collected by the logger. The logger would record a high number of suspended sediment data from otherwise natural flood events that could implicate HEC construction activities.

3.2 EVALUATION

The objective of TSS monitoring is to evaluate the current performance of the control measures in place in the construction sites. In the event that the TSS concentration shows spikes not attributable to natural causes, HEC is responsible to improve the current technologies used or develop new strategies to limit the increase of TSS in the Tina/Ngalimbiu River.

The results of the analysis will be presented as comparison between pre-construction and construction conditions and correlation may also be calculated and compared to the two different seasons (dry and wet).

3.3 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Field logs shall be maintained for all survey work, noting the date of the survey, equipment used, and a record of all activities and observations. Field logs shall be retained for the duration of the survey.

Measured data shall be digitally recorded from the instruments and converted into Microsoft Excel format, or manually noted. Both disc copy and hard copy shall be retained for the file records. Any deviation from the standard procedure shall be noted in the log and the reason for the deviation recorded. In addition, field logs shall contain notes of events or activities in the vicinity of the monitoring location which might give rise to anomalous data being recorded.

All *in situ* monitoring instruments shall be checked, calibrated and certified and subsequently re-calibrated throughout all stages of the monitoring, or as required by the manufacture's specification.

3.4 TRANSPORT OF SAMPLES

All samples transferred from the survey vessel to the laboratory should be accompanied by Chain of Custody (COC) forms supplied by the laboratory. The number of samples, the parameters to be tested and the time of delivery will be clearly stated on the COC forms to ensure that samples are analysed for the correct parameters and suitable time is provided to the analytical laboratory for provision of resources required in the analyses.

ANNEX M-1-III SPE MONITORING AND REPORTING

Extract from TSS and Water Quality Baseline Study Design

Table 1. Physico-c	hemical parameters	and instruments	or methods for	determining them.
--------------------	--------------------	-----------------	----------------	-------------------

Physico-chemical	Method/Instrument	Detection		
Parameters		limits		
Total Suspended Solids	Laboratory based Filtration/Gravimetric Method, EPA Approved Method	5 mg/L		
Turbidity	<i>In situ</i> measurement, using a portable EUTECH TN100 Turbidimeter	0.02 NTU		
Odour	Field odour test and laboratory based odour test at 60 °C.	-		
Colour	Photographing at site and lab testing using Hach Method 8025 – Platinum/Cobalt standard Method	15 mg/L		
Temperature	perature In situ measurement, using a portable pH/EC/TDS/Temp multi-meter (Eco-Testr)			
рН	<i>In situ</i> measurement, using a portable pH/EC/TDS/Temp multi-meter (Eco-Testr)	1.0		
Electrical Conductivity (EC)	<i>In situ</i> measurement, using a portable pH/EC/TDS/Temp multi-meter (Eco-Testr)	0.01 uS/cm		
Dissolved oxygen	<i>In situ</i> measurement using a dissolved oxygen meter (EUTECH DO6)	2.0 mg/L		
Salinity	Calculate from EC values above	0.1 mg/L		
Oil and Grease	Hexane extractable gravimetric determination, EPA method 1664.	15 mg/L		
Nutrients NH4-N	Using UV Spectrophotometer*, Hach Method 10023	0.02 mg/L		
Nutrients (NO3-N)	Using UV Spectrophotometer, Hach Method 10206	0.20mg/L		
Nutrients (PO4-P)	Using UV spectrophotometer, Hach Method 10209	0.01mg/L		
Fecal Contamination (E.coli & Total coliform)	Colilert-18 Method**	<1 count		

*SPE uses an advanced UV spectrophotometer (DR 3900) from Hach, a leading water quality analyses specialist

**Colilert-18 Method is the latest technology for microbiological analyses from IDEXX, with a short turnaround time of only 18 hours to determine both *E.coli* and total coliform together.

Reporting

The results will be presented in a tabular format (Table 2 below) and submitted to HEC on a monthly basis. The report will include values of each parameter at each sampling position (1-3) across the river and at each locations or sites (A -E) along the river. Included in this report table will be the WHO or ANZECC acceptable values for each parameter to be able to assess the level of each water quality parameter.

Correlation analyses between turbidity and suspended solids will also be carried out and presented in the report.

No	Sample ID	Temp	рН	EC	Salinity (estimate)	Dissolved Oxygen	Turbidity	TSS	Nitrate (NO3-N)	Ammonia (NH3-N)	Phosphate (PO4-P)	Colour Test	Odour Test
		°C	unit	μS/c m	mg/L	mg/L	NTU	mg/L	mg/L	mg/L	mg/L	Pt-Co mg/L	Averag e of 5 sniffers
1	A1												
2	A2												
3	A3												
4	B1												
5	B2												
6	B3												
7	C1												
8	C2												
9	C3												
10	D1												
11	D2												
12	D3												
13	E1												
14	E2												
15	E3												
Accej Val (ANZEC	otable ues C/ADWG)	< 35	6.5- 8.5	20- 250	>390	>6.0	< 5.0	-	<10	< 0.5	< 0.01	<15	accept able

Table 2: Physico-chemical analyses results of Tina River water quality at 5 sites along the river.

Assessment

Assessment will be made on the levels of each parameter prior to the construction phase. Attention will be given to the mean seasonal levels or levels during high water or floodings or rainy and dry seasons. The suitability of the river for drinking purposes will also be assessed against acceptable levels given by the ANZECC and WHO. Correlations of turbidity and suspended sediments will also be made to determine the link between sediment production and turbidity during the construction phase.

ANNEX M-1-IV INVESTIGATION OF DISCHARGE AND SEDIMENT LOAD

PROJECT : Tina River Hydropower Development Project (TRHDP)										
INVESTIGATION OF DISCHARGE AND SEDIMENT LOAD										
DOCUI	DOCUMENT No : E-GE-CVHH-R0-10130-D									
EMPLOY EPC CON	ER : T TRACTOR : H	INA HYDROPOWER LIMITED (TI IYUNDAI ENGINEERING CO., LTI	HL) D. (HE	C)						
		ISSUE STAT	TUS							
D	15-DEC-2021	<u>REVISED AS PER REVIEWS &</u> <u>DISCUSSIONS (UPDATED)</u>	<u>D.E.</u> <u>Yoon</u>	mas	<u>J.H.</u> Yang	Ale	<u>T.H.</u> <u>KIM</u>	sta	<u>J.M.</u> <u>KIM</u>	
С	30-JUN-2021	REVISED AS PER REVIEWS & DISCUSSIONS (UPDATED)	D.E. Yoon	mas	J.H. Yang	31 /-	T.H. KIM	sta	J.M. KIM	()m
В	11-NOV-2020	REVISED AS PER REVIEWS & DISCUSSIONS	D.E. Yoon	mas	J.H. Yang	31/2-	T.H. KIM	ster	J.K. LEE	Juik
А	30-APR-2020	ISSUED FOR REVIEW	D.E. Yoon	mas	J.H. Yang	Ale.	T.H. KIM	ster	J.K. LEE	Juik
REV. No.	DATE	DESCRIPTION	PREP	ARED	CHE	CKED	REVII	EWED	APPR	OVED

l

Tina River Hydropower Development Project (TRHDP)

INVESTIGATION OF DISCHARGE AND SEDIMENT LOAD

<u>15-DEC</u>-2021

Tina Hydropower Limited

Content

1. Introduction ······	1-1
1.1. Summary ······	1-1
1.2. Study objective ·······	1-2
1.3. Scope of works ·······	1-2
1.3.1. Investigation points ·······	1-2
1.3.2. Timing of investigation ····································	1-2
1.3.3. Investigation items ····································	1-2
1.3.4. Analysis······	1-3
2. Method Statement for River Discharge Measurement - Normal Condition	2-1
2.1. Overview	2-1
2.2. Monitoring Schedule······	2-1
2.3. Equipment Used ·······	2-2
2.4. Method	2-2
3 Method Statement for Discharge Measurement during Flood	₹_1
3.1 Floating Device	, . 1
3.2 Applicability and Practice Actually Performed at Site)- 1 ₹_1
3.3 Reference)- <u>-</u> }-2
	· <u>-</u>
4. Method Statement for Suspended Sediment and Bed Load Sampling	1-1
	1-1
4.2. Suspended Sediment Sampling and Analysis	4-1
4.2.1 Suspended Sediment Sampling	4-1
4.2.2 Suspended Sediment Analysis	1-3
4.3. Bed Load Sampling and Analysis	1-4 1 1
4.4 Samping Methodology For Low Flow Condition	1-4
4.4.1 Field Sampling	1-4
4.4.2 Installation of Bed Load Traps	1-4
4.5 Samping Methodology For High Flow Condition	<u>+-7</u>
4.6 Laboratory lesting and Analysis	4-7 4 -
4.6.1 Classification test (particle size distribution) ······	1-1 1 - 0
42Geochemical test	1-8
4.7 Reference ·······	1-8
5. Analysis Results	5-1
5.1. Discharge analysis results	5-1
5.1.1. Elevation-Area Relationship	5-1
5.1.2. Analysis of Measured Data	5-1
5.1.3. Comparison Between Measurements and Calculations	5-7
5.2. Sediment load analysis results	5- 8
5.3. Bed load analysis results	-11
5.3.1 Geochemical laboratory analysis results	-11
5.3.2 Particle size distribution and classification	14
5.4 Discussions and Conclusions ······5-	17
5.5 References ······5-	18

Appendix-1	1 Photographs of field reconnaissance ······	•A1-	1
------------	--	------	---

Appendix-2	Current Meter ······A2-1
Appendix-3	Certification of Current Meter ···································
Appendix-4	Measuring Equipments ······A4-1
Appendix-5	Total Suspended Solids(TSS) - EPA method ······A5-1
Appendix-6	Discharge Measurement Data ······A6-1
Appendix-7	Geochemical Lab Report ······A7-1
Appendix-8	Particle size Distribution Reports ······A8-1
Appendix-9	Laboratory Testing Photos ······A9-1
Appendix-1	Proposed Hydrological Monioring Plan (For U/S & D/S of Dam During Construction)······A10-1

I

1. Introduction

- 1.1 Summary
- 1.2 Study Objective
- 1.3 Scope of Works

1. Introduction

1.1. Summary

- 1) Study Name: Investigation of Discharge and Sediment load for the Tina River Hydropower Development Project (hereinafter called the "Project") in Solomon Islands
- 2) Study Location: Tina River, Southeast of Honiara, Guadalcanal Island, Solomon Islands
- 3) Dam: RCCD (Roller Compacted Concrete Dam), H 71.3 m, L 234 m
- 4) Spillway: W 55 m
- 5) Power Waterway: Headrace Tunnel D 3.8 m & L 3.2 km, Penstock L 181 m, Surge Tank D 7.0 m
- 6) Power Station: W 16.3 m x H 28.0 m x L 40.9 m

7) Installed Capacity: 15 MW (Vertical Francis, 5 MW x 3 Units)

<Figure 1.1> Study General Layout

<Figure 1.2> General Layout of Dam Area and Powerhouse Area

1.2. Study objective

The purpose of this study is to provide basic data of hydraulic characteristics through investigation in discharge and sediment load in the Tina River for the Project in Solomon Islands.

1.3. Scope of works

Scope and major items of investigation in discharge and sediment load are as follows.

1.3.1. Investigation points

Investigation/measurement points were selected based on the contractual requirements and ESIA (2017) requirements. The measurements are to be conducted along the six points of Tina River; ① Upstream of Dam Site, ② Base of Dam Site, ③ Power House, ④ Tony River (before junction with Tina River), ⑤ Vuramali Village (Approx. 10 km from Dam Site), and ⑥ Ngalimbiu Bridge (Approx. 20 km from Dam Site).

(Note that, from the resumption of field measurement in October 2021, No. 3 and 4 are not additionally measured, only No. 1, 2, 5, and 6 are measured.)

Figure 1.3> Measurement points of discharge & sediment-discharge in Tina River

1.3.2. Timing of investigation

Timing of discharge measurement, sediment load measurement and bed materials sampling is as follows:

- 1) Discharge measurement : from low water level to high water level
- 2) Sediment load measurement : from rising limb to recession limb
- 3) Bed material sampling: before and after the flood
 - X The measuring points and timing can be changed depending on the field situations.

1.3.3. Investigation items

1) Discharge measurement

- ① Velocity measurement using flow velocity meter
- Velocity measurement using float
- 3 Discharge measurement
- 2) Sediment load measurement
 - ① Methods: Depth-integrated sampling, point-integrating sampling, surface sediment load sampling
 - ② Determine the number of cross-sections and location of cross-sections
 - ③ Grain size and component analysis*
 - *Sediment load measurement plan can be changed depending on number of sediment load samples and analysis equipment condition.
- 3) Bed material sampling
 - $(\ensuremath{\underline{1}})$ Determine the number of cross-section and location of cross-section
 - 2 Grain size and component analysis

1.3.4. Analysis

- 1) Analysis of discharge measurement including establishment of stage-discharge relationship
- 2) Analysis of <u>suspended</u> sediment <u>and bedload</u> <u>samples</u>, <u>including laboratory tests</u> <u>and establishment</u> <u>of discharge-sediment relationship</u>
- <u>Laboratory tests includes weighing, particle size distribution, mineral composition and hard mineral</u> <u>analysis (e.g. hardness, shape of particle).</u>

2. Method Statement for River Discharge Measurement – Normal Condition

- 2.1 Overview
- 2.2 Monitoring Schedule
- 2.3 Equipment Used
- 2.4 Method

2. Method Statement for River Discharge Measurement - Normal Condition

2.1. Overview

The discharge measurements for Tina River are carried out using the current meter (Area – Velocity Method). The product of the water velocity (V) and cross-sectional area (A) is used to determine the Discharge (Q).

The objective of this report is to provide detail method statement of the technique and instruments used to measure the river velocity and cross-sectional area, to explain the calculations required to determine the river discharge, and to outline the factors affecting the accuracy of the discharge measurements.

2.2. Monitoring Schedule

<u>Monitoring began in July 2020 and will continue through the construction period</u>. For normal times the frequency of monitoring <u>is on a weekly-to-monthly basis</u>. The table below shows field monitoring <u>conducted up to date</u>. However, whenever there is flooding the monitoring team will be dispatched to the site to conduct additional monitoring.

The site monitoring for the six locations normally takes one-whole day. The monitoring team normally starts at 06:00 and finishes at 18:00.

Month & Year	No.		Dates of Monitoring						
Jun, 2020	2	29.06.2020	30.06.2020						
Jul, 2020	5	01.07.2020	02.07.2020	03.07.2020	07.07.2020	14.07.2020			
Aug. 2020	2	04.08.2020	25.08.2020						
Sep. 2020	1	01.09.2020							
Oct. 2020	4	07.10.2020	13.10.2020	20.20.2020	27.10.2020				
Nov. 2020	2	03.11.2020	17.11.2020						
Dec. 2020	1	29.12.2020							
Jan. 2021	1	14.01.2021							
	11	02.02.2021	10.02.2021	11.02.2021	12.02.2021	13.02.2021			
Feb. 2021		18.02.2021	19.02.2021	20.02.2021	25.02.2021	26.02.2021			
		27.02.2021							
Mar 2021	9	04.03.2021	05.03.2021	06.03.2021	13.03.2021	14.03.2021			
War. 2021		23.03.2021	24.03.2021	26.03.2021	27.03.2021				
<u>Jun</u> . 2021	4	<u>11</u> .0 <mark>6</mark> .2021	1 <u>7</u> .0 <u>6</u> .2021	<u>18</u> .0 <u>6</u> .2021	<u>19</u> .0 <u>6</u> .2021				
<u>Jul. 2021</u>	<u>1</u>	<u>04.07.2021</u>							
<u>Oct. 2021</u>	<u>2</u>	<u>16.10.2021</u>	<u>23.10.2021</u>						
<u>Nov. 2021</u>	<u>3</u>	05.11.2021	06.11.2021	07.11.2021					

<Table 2.1> Monitoring conducted until November 2021

2.3. Equipment Used

<Table 2.2> OTT MF Pro current meter used on site

2.4. Method

- 1) During normal river conditions the OTT MF Pro current meter is used to measure the depth and velocity of the river. The subsection width of the river (1 m interval) is determined using the measuring tape.
- 2) The river channel cross section is divided into numerous 1 meter strip. In each strip the area is obtained by multiplying the width and the depth of the strip, and the water velocity for each strip is estimated from the mean of the velocity measured at 0.2 and 0.8 depth in that strip.
- 3) The discharge in each strip is computed by multiplying the strip area with the mean velocity.
- 4) The total discharge is then computed by summing the discharge of each subsection.
- 5) The discharge determined from the Area-velocity method using current meter, will be plotted in the Rating curve graph showing the Discharge (Q) against depth of flow (D). To plot the rating curve, it is necessary to take measurements at many different water levels, including infrequent occurring flood flows.

1	2	3	4	5	6	7	8
Section	Donth	Width	Area (m/s2)	Flo	ow Velocity (m	Discharge (Q)	
Section	Deptil	vviatri	[2 x 3]	0.2D	0.8D	Mean	[4 x 7]

<table 2.3=""> Parameters measured usin</table>	a current meter a	and calculation	of the discharge
	g ••••••••••••••••••••••••••••••••••••		

3. Method Statement for River Discharge Measurement During Flood

- 3.1 Floating Device
- 3.2 Applicability and Practice Actually Performed at Site
- 3.3 Reference

3. Method Statement for Discharge Measurement during Flood

3.1. Floating Device

The rate of flow passing a point in a ditch or other open channel can be determined by multiplying the cross sectional area of water by the average velocity of the water. Normally, the cross sectional area can be determined by direct measurement of the channel dimensions. The velocity can be estimated by timing the passage of a float through a measured length of channel. The procedure for estimating rate of flow by the float method is as follows:

- 1) . Select a straight section of ditch with fairly uniform cross sections. The length of the section will depend on the current, but 30 meters usually will be adequate. A shorter length may be satisfactory for slow flowing ditches.
- 2) Make several measurements of depth and width within the trial section to arrive at the average cross sectional area. The area should be expressed in terms of square meters.
- 3) Place a float in the ditch about a meter upstream from the upper end of the trial section. Determine the number of seconds it takes for the float to travel from the upper end of the trial section to the lower end. Make several trials to get the average time of travel. <u>In this investigation, rod floats of 1.2m length were used for measurement of flows above wading level.</u>
- 4) Determine the velocity (or speed) of the float in units of meters per second by dividing the length of the section (in meters) by the time (in seconds) required for the float to travel that distance.
- 5) To secure more accuracy of rod float measurements, comparative measurements by a current meter and by rod floats will be conducted up to the highest wadable level as well as necessary resurvey of cross-section. With this comparison, a velocity correction factor can be derived. (Note that the correction factor of 1.00 was applied to discharge estimates from rod floats currently presented in this report, considering that USGS suggests the correction factor value ranging from 0.85 to 1.00 for rod float measurement and that the correction factor for long rod floats often approximates 1.00 for high flow/flood conditions.)
- 6) Compute the rate of flow. The rate of flow is obtained by multiplying the average cross sectional area (item 2) by the average stream velocity (item 5). The accuracy of these estimates of flow rates is dependent upon the preciseness with which average cross sectional areas and float velocities have been determined and upon the selection of the proper correction coefficient.

3.2. Applicability and Practice Actually Performed at Site

The Contractor checked measurement methods including cableways to measure the river velocity, and to sample the suspended sediment and bed load material during flows greater than those suitable for wading method. Regarding the cableway type, the Contractor concludes that it is not practicable to install the commercial cableway systems using electricity to operate the instruments to the sites because there are no power supply, and other infrastructures to install the structures. The method to use the cable tied boat can be an alternative method to approach the center of river, however the safety <u>and applicability</u> matters should be considered. The road condition is another hindrance to install or carry the materials to the sites, especially at dam site.

Although comments of reviewers including OE and DSAP on alternative measuring such as using cableways are respected, the Contractor thinks that actual site conditions <u>do not allow standard</u> <u>application and practice of it</u>. According to the Contractor's experiences from dam site reconnaissance and investigations, the site's surrounding conditions and very limited accessibility is not simply superable. <u>Similarly, due to the safety and applicability matters, the current meter cannot be used under flood flow conditions either.</u>

As mentioned above, ADCP will not be applied due to site conditions, but suspended sediment will be collected by a depth-integrated sampler with help of a simple cableway to be installed upstream and downstream of the dam.

Currently, there is no staff gauges and benchmark datums at measurement locations upstream and downstream of the dam. HEC will install staff gauges and benchmark datums at the time when installing stream gauging facilities such as the cableway and automatic gauging equipment.

3.3. Reference

Phil Turnipseed and Vernon B. Sauer, 2010, Discharge Measurements at Gaging Stations, USGS CEE 370 Lab, 2019, Lab Exercise #1: Stream flow

John S. Gierke, Ph.D., P.E., 2002, ENG5300 Engineering Applications in the Earth Sciences: Measuring River Discharge

4. Method Statement for Suspended Sediment and Bed Load Sampling

- 4.1 Overview
- 4.2 Suspended Sediment Sampling and Analysis
- 4.3 Bed Load Sampling and Analysis
- 4.4 Sampling Methodology For Low Flow Condition
- 4.5 Sampling Methodology For Hihg Flow Condition
- 4.6 Laboratory Testing and Analysis
- 4.7 Reference
4. Method Statement for Suspended Sediment and Bed Load Sampling

4.1. Overview

Sediment movement in streams and rivers takes two forms. Suspended sediment is the finer particles which are held in suspension by the eddy currents in the flowing stream, and the larger solid particles are rolled along the streambed and called the bed load. There is an intermediate type of movement where particles move downstream in a series of bounces or jumps, sometimes touching the bed and sometimes carried along in suspension until they fall back to the bed. This is called movement in saltation, and is a very important part of the process of transport by wind, but in liquid flow the height of the bounces is so low that they are not readily distinguished from rolling bed load.

The relative quantities moved as suspended sediment and as bed load vary greatly. At one extreme, where the sediment is coming from a fine-grained soil such as a wind-deposited loess, or an alluvial clay, the sediment may be almost entirely in suspension. On the other hand, a fast-flowing clear mountain stream may have negligible amounts of suspended matter and almost all the movement by rolling gravel, pebbles and stones on the streambed. Very high concentrations of sediment, as occur in some rivers such as the Yellow River in China and the Mississippi in the USA, may cause significant changes in the rheological properties of the water. The viscosity is higher and the particle settling velocity much lower, so that the threshold between suspended sediment and bed load becomes blurred. The estimation of suspended load by sampling is relatively simple, but taking a representative sample of bed load is difficult.

4.2. Suspended Sediment Sampling and Analysis

This report provides insight into how Suspended Sediments from Tina River were sampled and analysed.

4.2.1 Suspended Sediment Sampling

The suspended sediment will be sampled using Depth-Integrating Suspended Sediment Sampler with gradually moving upwards from the bed. The sampling device of US<u>GS</u> DH-48 will be used according to the field conditions. Under the flood conditions, the cableway <u>deploying USGS</u> D-<u>74</u> <u>sampler</u> will be considered and operated after feasibility test considering safety matters in high velocity conditions, and equipment and apparatus to be used for monitoring.

The Contractor checked measurement methods including cableways to measure the river velocity, and to sample the suspended sediment and bedload material during flows greater then wading conditions. Regarding the cableway type, the Contractor concludes that it is not practicable to install the commercial cableway systems using electricity to operate the instruments to the sites because there are no power supply, and other infrastructures to install the structures. The method to use the cable tied boat can be an alternative method to approach the center of river, however the safety matters should be considered. The road condition is another hindrance to install or carry the materials to the sites, especially at dam site.

<Figure 4.1> Suspended Sediment Sampler

1) Method

Two primary types of surface-water samplers used by the USGS are; **1** Isokinetic depthintegrating samplers **2** Nonisokinetic samplers. In this project the monitoring team will be adopting the Isokinetic Depth-Integrating Sampler Method.

A. Isokinetic Depth-Integrating Sampler

Depth integrating samplers are designed to isokinetically and continuously accumulate a representative sample from a stream vertical. Depth-integrating samplers collect a discharge-weighted sample as they are lowered at a uniform rate from the water surface to the streambed, instantly reversed, and then raised up the vertical again to the water surface.

(1) US DH-48

The US DH-48 was one of the first samplers designed by the FISP. The US DH-48 is a lightweight handheld depth-integrating sampler used for the collection of suspended sediment samples in wadable streams.

- i. This instrument is calibrated with an intake nozzle of 1/4 inch in diameter.
- ii. The un-sampled zone using the US DH-48 is 9 cm.
- iii. The sampler can be used in velocities that range from 0.46 to 2.7 m/s.
- iv. A standard 1/2 inch diameter wading rod is threaded into the top of the sampler body for suspending the sampler.

To sample to depths greater than can be waded, wading rod extensions in 0.3- and 0.9metre lengths can be added to the sampler. With the extensions, the sampler can be deployed from a low bridge or boat.

(2) US D-74

The US D-74 is a 28 kg cable-suspended sediment sampler. The sampler is a more recent version of the D-49 sampler. The only differences between the D-74 and D-49 samplers are the shape and size of their sample container.

- i. The D-74 will accommodate either round or squared pint-bottle containers.
- ii. The D-74 sampler is lowered and raised from a bridge crane or cableway by means of a standard hanger bar and reel and cable suspension system.
- iii.The sampler can be used in stream depths up to 4.6 m and in stream velocities ranging
from 0.46 to 2 m/s. Distance between nozzle intake and streambed is 10.4 cm.
- iv. Intake nozzles of 1/8, 3/16 and 1/4 inch internal diameters are available to project into the stream current for collecting samples.

<u>Sampler</u> <u>type</u>	<u>Weight</u> (kg)	Suspension type	<u>Intake</u> <u>nozzle size</u> <u>(inch)</u>	<u>Maximum</u> Depth (m)	<u>Velocity</u> <u>range</u> <u>(m/s)</u>	Sampler container size int litre
<u>US DH-48</u>	<u>1.6</u>	Rod	<u>1/4</u>	<u>2.8</u>	<u>0.46-2.7</u>	<u>0.47</u>
<u>US D-74</u>	<u>28</u>	<u>Reel and</u> <u>cable</u>	<u>1/8, 3/16</u> and 1/4	<u>4.6</u>	<u>0.46-2</u>	<u>0.47</u>

<Table 4.1> Isokinetic samplers and characteristics

4.2.2 Suspended Sediment Analysis

1) Overview

The USGS used measurement of suspended-sediment concentration as the most accurate way to measure the total amount of suspended material in a water sample collected from the flow in rivers. Another commonly used measurement of suspended material is the TSS analytical method.

This report explains the method of analysis adopted to determine the total suspended sediment concentration and the Particle Size Distribution from the sample collected in Tina River while conducting the monitoring.

A. Particle Size Distribution (PSD),), Composition & Heavy Metal Analysis, Hardness Test and Shape of hard particle

Method	Method 11.1 Particle size distribution – Sieving method					
Standard	AS 1141.11.1 – 2009					
Laboratory conducting analysis	Soils Laboratory - Ministry of Infrastructure Development; Geochemical Laboratory - Ministry of Mines and Energy, SI					
Apparatus	Balance, Drying oven, Sampler divider, Sieves, Brushes, Mechanical sieve shaker.					
Scope						
This test used to determine the particle size distribution in the coarse and fine aggregates. The						

amount of passing a 75 μ m sieve may be determined using AS1141.12 or by this method when sample are washed over a 75 μ m sieve. If the percentage of material passing a 75 μ m sieve is specified, then follow the procedure detailed in AS 1141.12.

B. Total Suspended Sediments (TSS)

Method	EPA Method 160.2 (Gravimetric, Dried at 103 – 105°C)
Laboratory conducting analysis	SPE Analytical & Scientific
Analytical Parameters	Total Suspended Solids (TSS) in water sample
<u>Apparatus</u>	<u>Glass fibre filter disc, Filter support, Suction flask, Drying</u> oven (103 – 105°C), Desiccator, Analytical balance
<u>Scope</u>	
The water samples collected from t filter, and the residue retained on th the procedure outlined in EPA meth	he river is well-mixed and then filtered through a glass fibre ne filter is dried to constant weight at 103 – 105°C. Refer to od 160.2 for the analysis of samples for TSS.

4.3. Bed Load Sampling and Analysis

Bed load is that sediment carried down a river by rolling and saltation or near the stream bed. It is defined as part of the sedimentary load of the stream which moving in almost continuous contact with the stream bed, being rolled or pushed along the bottom by the tractive force of the moving water. The mechanism by which it moves can be varied and complex. The estimations of bed load may be obtained from samples caught in a device which is lowered to the streambed for a measured time then brought up for weighing the catch.

This report provides insight into understating of sediment sampling equipment used for sampling, guidance for the selection of the appropriate equipment, and detail information on how Bed load material from Tina River were sampled and analysed.

Bed load trap is a portable sampler designed specifically for collecting gravel and cobble bed load in wade-able streams. Bed Load traps consist of a frame with an along trailing net is attached. Bed load taps are installed on the ground plated, that are anchored to the stream bottom with metal stakes. The traps do not have to be hand-held while sampling and have a large volumetric capacity. This allows collection of bed load over relatively long intervals, typically one hour per sample.

The river discharge was measured at the same time and location while conducting the Bedload sampling. The time the trap was active inside the water prior to removing the materials depends on the site conditions and flow of the river.

At the sites near the dam (upstream dam & downstream dam), it took approximately 30 minutes to fill the trap before removal of the trap. At sites from the powerhouse to the bridge, it took approximately 45 to 60 minutes at maximum to fill the trap before removal of the trap. This is because the river flow is slow and it took a longer period of time for the trap to be filled.

4.4 Sampling Methodology For Low Flow Condition

This section provides a brief summary of the Field Investigation and Laboratory Testing for the five sites namely:

- 1. Site 1 (Upstream of Dam)
- 2. Site 2 (Downstream of Dam)
- 3. Site 3 (Power House)
- 4. Site 4 (Varamali)
- 5. Site 5 (Ngalimbiu Bridge)

4.4.1 Field Sampling

Bed Load Sediment sampling was done on 23rd to 27th November 2020. The method of sampling done is outlined and discussed below. <u>Additional sampling will be done on a regular basis or after flooding events through the construction period.</u>

4.4.2 Installation of Bed Load Traps

The installation of bed load traps on the stream bed involves five major steps;

A. Selecting a site, considering both the stream and cross section

Careful selection of the sampling location is important in order to adequately sample bed load. Two main criteria considered while selecting the sampling sites are;

1. Appropriateness of the site and

2. Suitability of the site to deploy bed load traps.

Appropriateness of the sampling site must satisfy the following conditions;

Distance from upstream gravel source and sinks – Proximity of upstream gravel sources or sink affects measured bed load transport rates and influences the shape of the bed load transportation discharge relations. In general, it is better to avoid site just downstream from either source or sink locations.

Suitability of the site to deploy bed load traps;

While using bed load traps the following criteria must be considered when conducting site selection;

Wade ability of the flow condition - whether the flow condition is wadable by personnel installing the bed load traps.

Absence of boulders in the stream bed – avoid sites dominated by large cobbles and boulder in the stream bed when using bed load traps. Protruding boulders direct the flow, causing irregular spatial patterns of transport and disposition of the bed load within the cross-section.

B. Positioning the Traps within selected cross section

The bed load traps were deployed evenly in three locations per cross section to cover the majority of the river width. However, in some cases the bed load trap spacing is a compromise between equal width spacing, equal transport spacing. To provide accurate prediction of the cross-sectional transport rate, trap spacing should coincide with width increments of approximately equal transport. This requires predicting the locations of the highest transport rates from the patterns of stream flow.

C. Setting and anchoring the ground plates

Placing the ground plates at the right height on the bed – Positioning ground plates flush with the mean surface level of the bed without protruding above, or lying below. Two methods can be used to obtain this position:

- When flow is low, remove large surface particles from the area where the ground plate is to be placed and replace them with smaller ones. Place the ground plate on the stream bed and check it for the appropriate height. Fill the gaps along the sides of the ground plate with few stones large enough to fill the gap.
- 2. If the flow is high, ground plate are best stalled by shoving the edge of the plate about an inch deep into the bed surface. Lower the plate onto the bed and check for the appropriate elevation relative to the mean height of the bed. Remove and replace larger stones with smaller ones until a satisfactory position for the ground plate is reached.

<Figure 4.2> Setting and anchoring the ground plates

D. Preparing the area next to the Traps

If the installation processes disturbed the stream bed at the upstream side of the traps, the bed must be restored to avoid artificially increased or decreased particle entrainment condition near the bed load trap entrance. Replace the large particles that were removed at the upstream side of the ground plates with smaller ones along the front edge of the ground plate that sticks into the bed. Gather finer material from a nearby location and carefully place it over the replacement stones to refill interstitial spaces to ensure that particles at the remolded stream bed have settled into place.

<Figure 4.3> Preparing the area next to the Traps

E. Operation of Bed Load Traps

<Table 4.2> Operation of Bed Load Traps

4.5 Sampling Methodology For High Flow Condition

Under the flood condition, the grab sampling will be considered considering in situ conditions, however, when it is not adequate to use the grab sampling, the alternative method using the Wilcock-Crowe equation to estimate the bed load rate.

Wilcock and Crowe (2003) developed a transport relation based on the full grain size distribution of the bed surface, including the sand. This relation includes an additional function that accounts for the nonlinear effect of sand content on gravel transport rates.

4.6 Laboratory Testing and Analysis

Samples for laboratory testing was done in two different laboratories; classification test for particle size distribution (PSD) was done at the <u>Soils Laboratory of the</u> Ministry <u>of</u> Infrastructure Development and analytical test for heavy metals was conducted at the <u>Geochemical Laboratory of the</u> Ministry <u>of</u> Mines and <u>Energy</u>.

As other analysis items, we plan to carry out gravimetric measurement, composition & mineralogy, hardness test for high-hardness mineral components, and shape of hard particle analysis at a later date.

However, the entire laboratory was burned down due to violent protests in the Solomon Islands between November and December. Therefore, additional samples were lost, but sampling will continue in the future.

4.6.1 Classification Test (Particle Size Distribution)

Sieve analysis test was performed to identify the grain size distribution of the material. The procedure and methodology was done with reference to AS1289:3.6.1 Standard. Summary of the methodology is outlined below;

- 1. Spreading of sample (air dried)
- 2. Segregation (Mixing)
- 3. Riffling (Quartering & Reduction)
- 4. Extract representative sample and quantity required
- 5. Sieving

4.<u>6</u>.2 Geochemical Test

The analysis of major and trace elements in the sample was done using An X-ray fluorescence (XRF) spectrometer, the procedure was done in accordance to American quality assurance Standard. Flow Chart of the procedure adopted is as follows;

Collection of incoming sample from site;

- 1. Receiving of labelled packed sample Boxes/Esky and check the number of boxes against the sample list provided.
- 2. Drying of wet samples using oven or using sun (air dried).
- 3. Crushing of Rock samples using Jaw Crusher and crushing of soil samples using Maller Hammer.
- 4. Splitting of the sample_and weighing.
- 5. Drying of sample again if it is still wet in oven
- 6. Cooling of Sample.
- 7. Milling of sample using Ball Mill or Ring Mill and sample is packed and send to ALS or
- 8. Pressing of sample using hydraulic handy Press.
- 9. Assaying of sample with XRF final result collected and compiled Assay file.

<Figure 4.4> Flow Chart Showing Geochem Lab Testing Procedure

4.7 Reference

Myers, M. D. (2020, 09 22). Techniques of Water-Resources Investigations. Retrieved from U.S. Geological Survey: http://pubs.water.usgs.gov/twri9A

NIWA, Jun 2017, Review of suspended sediment measurement techniques

5. Analysis Results

- 5.1 Discharge Analysis Results
- 5.2 Suspended Sediment Load Analysis Results
- 5.3 Bed Load Analysis Results
- 5.4 Discussions and Conclusions
- 5.5 References

5. Analysis Results

5.1. Discharge analysis results

5.1.1. Elevation-Area relationship

When calculating the flow rate, it is necessary to apply the elevation-area relationship by referring to the cross section of the survey. The measured river cross-section and corresponding cross-sectional area were used, and the water level-cumulative cross-sectional area table for the upstream dam and downstream dam was prepared in Table 5.1 below. The water level-cumulative cross-sectional area table is displayed at 0.5m intervals up to 5m.

<Table 5.1> Elevation-Area relationship

2	1.Upstream of dan	<u>n</u>	<u>2.</u>	Downstream of da	<u>am</u>				
<u>Water</u> depth	<u>Surface</u> <u>width</u>	Accumulated area	<u>Water</u> depth	<u>Surface</u> width	Accumulated area				
<u>0.0</u>	<u>0.0</u>	<u>0</u>	<u>0.0</u>	<u>0.0</u>	<u>0</u>				
<u>0.5</u>	<u>19.3</u>	<u>5.1</u>	<u>0.5</u>	<u>7.4</u>	<u>1.9</u>				
<u>1.0</u>	<u>31.3</u>	<u>18.03</u>	<u>1.0</u>	<u>12.0</u>	<u>6.82</u>				
<u>1.5</u>	<u>38.9</u>	<u>35.3</u>	<u>1.5</u>	<u>17.0</u>	<u>14.1</u>				
<u>2.0</u>	<u>44.5</u>	<u>56.49</u>	<u>2.0</u>	<u>22.0</u>	<u>23.82</u>				
<u>2.5</u>	<u>47.0</u>	<u>79.4</u>	<u>2.5</u>	<u>27.1</u>	<u>36.2</u>				
<u>3.0</u>	<u>49.1</u>	<u>103.41</u>	<u>3.0</u>	<u>30.4</u>	<u>50.6</u>				
<u>3.5</u>	<u>51.0</u>	<u>128.5</u>	<u>3.5</u>	<u>32.8</u>	<u>66.4</u>				
<u>4.0</u>	<u>52.9</u>	<u>154.41</u>	<u>4.0</u>	<u>35.3</u>	<u>83.39</u>				
<u>4.5</u>	<u>54.8</u>	<u>181.3</u>	<u>4.5</u>	<u>37.9</u>	<u>101.7</u>				
<u>5.0</u>	<u>55.9</u>	209.01	<u>5.0</u>	40.7	<u>121.31</u>				

<Table 5.2> Water level – Cumulative cross-sectional area

5.1.2. Analysis of measured data

At the site 1, upstream of dam, at the site 2, downstream of dam, at the site3, power house, at the site4, tony river, at the site5, Vulamali Village, and at the site6, Ngalimbiu Bridge, measurements were undertaken from June 2020 to <u>November</u> 2021 as summarized below. Table 5.1, Table 5.2 and Table 5.3 show the average value for the river discharge, water depth and flow velocity. Detailed data of the river discharge measurement are attached under Appendix 6.

The relationship of the water depth according to the discharge flow (i.e. rating curves) are shown in Figure 5.1 to Figure 5.6 for the site 1 to the site 6.

In the meantime, further measurement of river discharge needs to be conducted as collected data up to date is relatively limited and does not cover wide flow regimes including flooding conditions. It is expected that collection of river flow data will be enhanced when automatic gauges are installed at the site 1 and site 2, i.e. the upstream of dam and the downstream of dam. As river flow measurement data is accumulated, corresponding update of the rating curves should be made based on increased reliability and coverage of data.

Measuring Sites	1.Upstream of dam	2. Downstream of dam	3.Power house	4.Tony River	5.Vulamali Village	6.Ngalimbiu Bridge
29 Jun 2020					4.02	4.65
30 Jun 2020	5.99	5.08				
1 Jul 2020			4.88			
2 Jul 2020					10.06	
3 Jul 2020		7.93				
7 Jul 2020	5.13	5.33	6.50	2.26		
14 Jul 2020	4.15	4.44	7.63	1.33		
4 Aug 2020	3.10	3.29	2.79	1.24	3.98	4.64
25 Aug 2020	2.80	3.20	2.33	1.00	3.95	4.54
1 Sep 2020	2.92	3.42	2.48	1.00	4.10	4.67
7 Oct 2020	6.06	6.24	6.49	1.33	6.70	6.78
13 Oct 2020	5.56	6.08	5.94	1.35	6.20	5.97
20 Oct 2020	7.13	7.66	8.39			63.31
27 Oct 2020	28.89	28.21	47.40		71.38	92.00
3 Nov 2020	24.06	23.27	38.05		74.32	97.06
17 Nov 2020	18.81	20.06	34.61		55.68	60.93
29 Dec 2020	26.18	34.28	34.61		62.65	79.56
14 Jan 2021	37.34	38.68	47.27			107.31
2 Feb 2021	37.10	33.85	41.97			107.64
10 Feb 2021	47.17	52.90				
11 Feb 2021	46.66	57.41				
12 Feb 2021	50.25	56.22				
13 Feb 2021			36.99	14.26	62.88	69.84
18 Feb 2021	39.95	90.52				
19 Feb 2021	59.07	66.69				
20 Feb 2021				13.35	48.95	50.99
25 Feb 2021	93.76	111.07				
26 Feb 2021	93.94	107.51				
27 Feb 2021			61.15	16.23	77.73	84.03
4 Mar 2021	123.08	128.18				
5 Mar 2021	166.59	176.55				
6 Mar 2021			80.06	29.56	137.11	140.75
13 Mar 2021				12.45	70.23	100.37
14 Mar 2021				2.07	70.19	120.19
23 Mar 2021				15.51	47.06	58.89

<Table 5.3> Average River Discharges (m³/s)

24 Mar 2021				10.88	57.19	58.82
26 Mar 2021					59.49	85.26
27 Mar 2021					60.66	85.54
11 Jun 2021	12.87	13.23	13.99			
<u>17 Jun 2021</u>	<u>9.49</u>	<u>1.66</u>				
<u>18 Jun 2021</u>	<u>9.77</u>	<u>1.66</u>				
<u>19 Jun 2021</u>	<u>5.73</u>	<u>1.98</u>				
<u>4 Jul 2021</u>	<u>13.02</u>	<u>2.55</u>				
<u>16 Oct 2021</u>	<u>13.41</u>	<u>11.40</u>			<u>17.26</u>	<u>17.93</u>
23 Oct 2021	<u>5.94</u>	<u>6.21</u>				
<u>5 Nov 2021</u>	<u>12.53</u>	<u>2.34</u>				
<u>6 Nov 2021</u>	<u>163.87</u>	24.58				
<u>7 Nov 2021</u>	18.97	<u>5.85</u>				

<Table 5.4> Average Water Depth (m)

Measuring Sites	1.Upstream of dam	2. Downstream of dam	3.Power house	4.Tony River	5.Vulamali Village	6.Ngalimbiu Bridge
29 Jun 2020					0.47	0.90
30 Jun 2020	0.70	0.55				
1 Jul 2020			0.45			
2 Jul 2020					0.69	
3 Jul 2020		0.65				
7 Jul 2020	0.62	0.55	0.56	0.25		
14 Jul 2020	0.58	0.49	0.60	0.21		
4 Aug 2020	0.45	0.38	0.35	0.22	0.45	0.90
25 Aug 2020	0.43	0.38	0.34	0.21	0.43	0.80
1 Sep 2020	0.45	0.40	0.35	0.21	0.45	0.80
7 Oct 2020	0.70	0.60	0.55	0.24	0.60	1.10
13 Oct 2020	0.68	0.50	0.50	0.24	0.60	1.00
20 Oct 2020	0.90	1.70	0.62			1.60
27 Oct 2020	0.90	1.40	0.67		0.50	1.75
3 Nov 2020	0.84	1.50	0.65		0.48	1.75
17 Nov 2020	0.79	1.40	0.64		0.45	1.60
29 Dec 2020	0.89	1.80	0.64		0.48	1.70
14 Jan 2021	0.99	1.97	0.65			1.80
2 Feb 2021	1.01	1.70	0.67			1.80
10 Feb 2021	1.09	2.30				
11 Feb 2021	1.05	2.31				
12 Feb 2021	1.10	2.26				
13 Feb 2021			0.63	0.40	0.47	1.63
18 Feb 2021	1.05	2.48				
19 Feb 2021	1.20	2.27				
20 Feb 2021				0.41	0.45	1.51
25 Feb 2021	1.15	2.33				

26 Feb 2021	1.52	2.92				
27 Feb 2021			0.73	0.43	0.50	1.51
4 Mar 2021	1.70	2.49				
5 Mar 2021	1.84	2.74				
6 Mar 2021			0.76	0.48	0.65	1.81
13 Mar 2021				0.41	0.59	1.50
14 Mar 2021				0.33	0.57	1.53
23 Mar 2021				0.47	0.60	1.48
24 Mar 2021				0.40	0.62	1.51
26 Mar 2021					0.62	1.61
27 Mar 2021					0.63	1.61
11 Jun 2021	0.58	1.20	0.39			
<u>17 Jun 2021</u>	<u>0.73</u>					
<u>18 Jun 2021</u>	<u>0.82</u>					
<u>19 Jun 2021</u>	<u>0.64</u>					
<u>4 Jul 2021</u>	<u>0.76</u>					
<u>16 Oct 2021</u>	<u>0.85</u>	<u>0.99</u>			<u>0.71</u>	<u>1.20</u>
<u>23 Oct 202</u> 1	<u>0.67</u>	<u>0.67</u>				
<u>5 Nov 2021</u>	<u>0.84</u>	<u>0.57</u>				
<u>6 Nov 2021</u>	<u>1.43</u>	<u>1.04</u>				
<u>7 Nov 2021</u>	<u>0.88</u>	<u>0.73</u>				

<Table 5.5> Average Flow Velocity (m/s)

Measuring Sites	1.Upstream of dam	2. Downstream of dam	3.Power house	4.Tony River	5.Vulamali Village	6.Ngalimbiu Bridge
29 Jun 2020					0.32	0.36
30 Jun 2020	0.7	0.55				
1 Jul 2020			0.71			
2 Jul 2020					0.57	
3 Jul 2020		0.7				
7 Jul 2020	0.97	0.58	0.71	0.52		
14 Jul 2020	0.81	0.55	1.22	0.46		
4 Aug 2020	0.69	0.55	0.51	0.38	0.4	0.38
25 Aug 2020	0.67	0.56	0.54	0.34	0.4	0.41
1 Sep 2020	0.71	0.55	0.54	0.34	0.4	0.42
7 Oct 2020	0.92	0.77	0.81	0.35	0.46	0.47
13 Oct 2020	0.85	0.81	0.8	0.35	0.46	0.42
20 Oct 2020	0.92	0.79	0.83			1.80
27 Oct 2020	1.31	1.55	1.57		1.78	2.34
3 Nov 2020	1.21	1.72	1.32		1.96	2.36
17 Nov 2020	1.05	1.33	1.23		1.62	1.73
29 Dec 2020	1.20	1.59	1.23		1.68	1.99
1 <mark>4 Jan 2021</mark>	1.46	1.58	1.64			2.48
2 Feb 2021	1.41	1.86	1.39			2.39
10 Feb 2021	1.61	1.62				

11 Feb 2021	1.67	1.73				
12 Feb 2021	1.70	1.77				
13 Feb 2021			1.38	1.32	1.83	1.86
18 Feb 2021	1.61	2.46				
19 Feb 2021	1.78	2.15				
20 Feb 2021				1.19	1.43	1.23
25 Feb 2021	2.98	3.32				
26 Feb 2021	1.97	2.20				
27 Feb 2021			1.79	1.33	1.94	1.94
4 Mar 2021	2.20	3.44				
5 Mar 2021	2.65	4.09				
6 Mar 2021			2.16	1.92	2.40	2.62
13 Mar 2021				1.10	1.37	2.05
14 Mar 2021				0.44	1.44	2.11
23 Mar 2021				1.04	0.91	1.37
24 Mar 2021				1.03	1.06	1.36
26 Mar 2021					1.09	1.87
27 Mar 2021					1.09	1.85
11 Jun 2021	1.28	1.27	1.15			
<u>17 Jun 2021</u>	<u>1.05</u>	<u>0.68</u>				
<u>18 Jun 2021</u>	<u>0.81</u>	<u>0.72</u>				
<u>19 Jun 2021</u>	<u>0.81</u>	<u>0.79</u>				
<u>4 Jul 2021</u>	<u>1.18</u>	<u>0.96</u>				
<u>16 Oct 2021</u>	<u>0.81</u>	<u>0.77</u>			<u>0.86</u>	<u>0.76</u>
23 Oct 2021	<u>0.58</u>	<u>0.74</u>			<u>0.69</u>	<u>0.68</u>
<u>5 Nov 2021</u>	<u>0.94</u>	<u>0.97</u>				
<u>6 Nov 2021</u>	3.42	<u>1.91</u>				
<u>7 Nov 2021</u>	<u>1.31</u>	<u>1.51</u>				

Figures 5.1 and 5.2 show rating curve graphs according to additional measurements from June 2021 to November 2021, and the part marked in orange is the additionally updated data. As it seems that there has been change in rating at the location "downstream of dam" shown in Figure 5.2, it is necessary to survey the channel section again and necessary re-rating, in parallel with continuing measuring and sampling.

<Figure 5.1> Rating Curve - Upstream of Dam

<Figure 5.2> Rating Curve – Downstream of Dam

<Figure 5.3> Rating Curve – Power House

<Figure 5.4> Rating Curve – Tony River

<Figure 5.5> Rating Curve – Vuramali Village

5.1.3. Comparison between measurements and calculations

The table below compares the water depths at the upstream of dam, downstream of dam, and power house by applying the HEC-RAS program. Comparison was made for cases that have similar flowrate values and it was indicated that there are slight differences between measured water depths and calculated water depth. Although this difference is allowable at the current stage and measured data can be used for a preliminary assessment, deviation between measured and theoretically estimated values needs to be minimized by further measurement and analysis so that establishment of well-fitted rating curves and reliable representation and monitoring of river flow based on such rating curves can be achieved.

Measurement Sites	Q Total (m3/s)	Min Ch El. (m)	W.S. EI. (m)	Calculated water depth (m)	Measured water depth (m)	Difference [Cal. – Meas.] (m)
	Q10	121.75	122.29	0.54	0.58	-0.04
Upstream of Dom	Q40	121.75	122.55	0.8	1.05	-0.25
(No.7+080)	Q50	121.75	122.62	0.87	1.09	-0.22
(Q100	121.75	122.92	1.17	1.20	-0.03
_	Q10	116.33	118.07	1.74	1.20	0.54
Downstream	Q40	116.33	118.85	2.52	2.25	0.27
(No.6+560)	Q50	116.33	119.02	2.69	2.32	0.37
(,	Q100	116.33	119.65	3.32	2.87	0.45
	Q12.67	70.58	71.19	0.61	0.37	0.24
(No 1+560)	Q19	70.58	71.27	0.69	0.40	0.29
(100.11000)	Q50	70.58	71.52	0.94	0.71	0.23

<Table 5.6> Comparison of calculated and measured water depths

5.2 Suspended sediment load analysis results

The concentrations of the suspended sediments from five measuring sites except the additionally added site 4, Tony River, were determined by sampling. Sampling were undertaken intermittently at site 1, 2, 3, 5 and 6 from June 2020 to February 2021. The weather on sampling days were mostly sunshine and the river condition in general were clearer upstream at site 1 and site 2 and murkier downstream especially at site 5 and site 6.

Measured TSS (Total Suspended Solids) of each site is described in Table 5.5. TSS of upstream, site 1 and 2, are about 5mg/L to 10mg/L for relatively low flow conditions and about 50mg/L to 300mg/L for medium flow conditions. However, in downstream area of site 5 and 6, TSS are higher as 5 to 45mg/L for the low flow conditions. Higher values of TSS in downstream which are approximately 10 to 20km from the dam are inferred to be caused by the anthropogenic activities.

Measuring Sites	1.Upstream of dam	2. Downstream of dam	3.Power house	5.Vulamali Village	6.Ngalimbiu Bridge
29 Jun 2020					15
2 Jul 2020				10	
14 Jul 2020	5	5	10		

<Table 5.7> Measured TSS (mg/L)

17 Nov 2020	12	12	<u>16</u>	20	28
11 Feb 2021	80	80			
12 Feb 2021	40	40			
18 Feb 2021	40	40			
19 Feb 2021	35	40			
20 Feb 2021			5		
26 Feb 2021	260	300			
4 Mar 2021	320	320			

Note : Samples for TSS measurement were collected since resumption of field measurement in October 2021, but violent protests in the Solomon Islands resulted in a complete burn down of the laboratory. Thus, samples were lost and TSS values could not be included in this table. Meantime, sampling will continue during the construction period.

The following figures from Figure 5.9 to Figure 5.14 are with reference to the table above and show the relationship between TSS and river discharge at each site. Although the TSS data presented in Table 5.6 and figures below is limited, it is expected that TSS in Tina river is relatively low for low to medium flow conditions. For the measurement site 1 (upstream of dam) and site 2 (downstream of dam), measured data were combined for analysis since these two sites are very close to each other and believed to show a similar trend with respect to discharge and suspended sediment. Based on these data, the relationship between TSS and the river discharge was derived. The derived TSS-Q curve is presented in form of a power function and plotted on a logarithmic scale, as shown in Figure 5.9. As for the individual measurement site, only measured data are plotted for reference but the TSS-Q curves were not derived in consideration of insufficient number of measurement data at each site and consequent uncertainty.

The mineral composition of the suspend sediments were also tried to be analyzed. However, the solid proportions of the suspended sediment in sampled river water were not enough to take laboratory analysis. Taking more samples in the high water condition will be tried continuously. However, since March, 2021, the measurements and sampling have been stopped because of disputes and hindrances by the local people arising from the core land and compensation issue. As soon as the problems are settled down, the survey will be continued.

In the meantime, further measurement of suspended sediment load needs to be conducted as collected data up to date is limited and does not cover wide flow regimes including flooding conditions. It is expected that collection of suspended sediment data will be enhanced when automatic gauges <u>of</u> <u>monitoring discharge</u> are installed at the site 1 and site 2, i.e. the upstream of dam and the downstream of dam. As suspended sediment measurement data is accumulated, corresponding update of the relationship between river discharge and suspended sediment load should be made based on increased reliability and coverage of data. <u>Analysis of suspended sediment will include weighing</u>, <u>particle size distribution</u>, <u>composition and mineralogy</u>, <u>hardness test as applicable</u>.

<Figure 5.7> TSS-Discharge Distribution – Dam Site (Upstream & Downstream)

5.3 Bed load analysis results

5.3.1 Geochemical laboratory analysis results

Bed load sampling conducted along the river sites confirmed that the material is sandy gravel, alluvial deposits weathered from boulders and outcrop located at high upstream. The method of sampling carried out was based on United States Department of Agriculture (USDA) procedure which was proven very effective and useful during the exploration.

Five sites were marked along the river to obtain samples that will produce a representative material of the region to give help in designing and construction. By examining the chemical composition of the stream sediment samples at the five (5) sites presented to the geochemical laboratory, it was found that samples for site 1 to site 5 have higher percentage of Silicon (Si), Aluminium (AI), Iron (Fe), Calcium (Ca), Potassium (K), Phosphorus (P) and Sulphur (S). (See attached XRF (X-Ray Fluorescence) results in Table 5.8 to Table 5.12.) By applying gravimetric technique, the results shows that all the sediments have composition of fine sand and contain an estimated average of 36% of quartz (19%) and feldspar (17%). Finally the material sampled along the sites are key substrate or

residue of the parent rock that represents the geology of the existing five sites .The results produced from the laboratories define the physical and chemical properties of the sediments or the samples.

	Elements/Names	PPM* (Part per Million)	Feldspar Composition in % (KAISi3O8 – NaAISi3O8- CaAl2Si2O8) Estimated	Quartz Composition in % (SiO2) Estimated
	K – Potassium	4138		
	P - Phosphorus	1228		
	S- Sulfur	891		
	Ca – Calcium	40500		20%
	Ti – Titanium	2426	450/	
SITE 1	Mn - Manganese	710		
Upstream of Dam	Fe- Iron	44300		
	Cu- Copper	81		
	Zn – Zinc	57		
	Rb - Rubidium	14	1370	
	Sr – Tin	438		
	Y- Yttrium	15		
	Zr – Zirconium	69		
	Ba – Barium	233		
	W – Tungsten	46		
	Th- Thorium	7	1	
	Al - Aluminium	17000	1	
	Si- Silicon	59100		

	• • ·		
<table 5.9=""></table>	Laborator	/ results – Site1	Upstream of Dam

* 1ppm = 1gram/tonne, 10,000ppm = 1%

	Elements	PPM*(Part Per Million)	Feldspar Composition in % (KAISi3O8 – NaAISi3O8- CaAI2Si2O8) Estimated	Quartz Composition in % (SiO2) Estimated
	KPotassium	3962		
	P - Phosphorus	1630		
	S- Sulfur	1138		
	Ca - Calcium	36000	2001/	18%
SITE 2	Ti - Titanium	3793		
Downstream of	Mn - Manganese	635		
Dam	Fe- Iron	55700		
	Cu- Copper	113		
	Zn - Zinc	74		
	Rb - Rubidium	13	20%	
	Sr – Tin	432		
	Y- Yttrium	14		
	Zr - Zirconium	74		
	Ba - Barium	209		
	Ni-Nickel	116		
	Nb-Niobium	4		
	Al - aluminium	16900		
	Si- Silicon	64300		

<Table 5.10> Laboratory results – Site2 Downstream of Dam

* 1ppm = 1gram/tonne, 10,000ppm = 1%

<Table 5.11> Laboratory results – Site 3 Power House

	ELEMENTS	PPM* (Part Per Million)	Feldspar Composition in % (KAISi3O8 – NaAISi3O8- CaAI2Si2O8) Estimated	Quartz Composition in % (SiO2) Estimated
	KPotassium	4375		
	S- Sulfur	881		
	Ca - Calcium	39300		20%
	Ti - Titanium	2142	400/	
SITE 3	Mn - Manganese	576		
Power House	Fe- Iron	40500		
	Cu- Copper	123		
	Zn - Zinc	61		
	Rb - Rubidium	12	10%	
	Sr - Tin	484		
	Y- Yttrium	13		
	Zr - Zirconium	71		
	Ba - Barium	232	1	
	Nb - Niobium	2		
	AI - Aluminium	19400		
	Si- Silicon	65900		

* 1ppm = 1gram/tonne, 10,000ppm = 1%

	ELEMENTS	PPM*(Part Per Million)	Feldspar Composition in % (KAISi3O8 – NaAISi3O8- CaAI2Si2O8) Estimated	Quartz Composition in % (SiO2) Estimated
	K - Potassium	4284		
	S - Sulfur	1026		
	Ca- Calcium	52000	16%	18%
SITE 5	Ti - Titanium	2239		
Vuramali Village	Mn- Manganese	614		
J J	Fe - Iron	40000		
	Cu- Copper	88		
	Zn - Zinc	57		
	Rb - Rubidium	13		
	Sr - Tin	461		
	Y - Yttrium	15		
	Zr - Zirconium	63		
	Ba - Barium	229		
	Al - aluminium	20300		
	Si – Silicon	63300		

* 1ppm = 1gram/tonne, 10,000ppm = 1%

<Table 5.13> Laboratory results – Site 6 Ngalimbiu Bridge

	ELEMENTS	PPM*(Part Per Million)	Feldspar Composition in % (KAISi3O8 – NaAISi3O8- CaAI2Si2O8) Estimated	Quartz Composition in % (SiO2) Estimated
	K - Potassium	4188		
	P -Phosphorus	973		
	S - Sulfur	886		
	Ca - Calcium	33400		
SITE 6	Ti - Titanium	2727		
Ngalimbiu Bridge	Mn- Manganese	709		
0 0	Fe - Iron	42800		
	CU - Copper	66		
	Zn - Zinc	66	15%	20%
	Rb - Rubidium	14		
	Sr - Tin	448		
	Y – Yttrium	13		
	Zr- Zirconium	64		
	Nb - Niobium	2		
	Ba – Barium	236		
	Al -Aluminium	21700		
	Si – Silicon	68500		

* 1ppm = 1gram/tonne, 10,000ppm = 1%

5.3.2 Particle size distribution and classification

Particle size distribution for the sampled bed load for the five sites (Site 1, 2, 3, 5 and 6) were analyzed as shown in the following tables and figures. Bed material is composed of mostly gravel and sand with small amount of silt up to 2% and is classified to sandy gravel or gravelly sand, except the site 5 of which silt composition is high.

	COMPOSIT	SOIL CLASSIFICATION	
LOCATION			JOIL OLAGOII IDATION
	Grain Size Distribution	Passing (%)	SANDY GRAVEL (ALLUVIUM):
Site1	Gravel	84	Mottled Grey-White Brown, fine to
(Upstream)	Sand	13	coarse sub angular gravel, fine to
	Silt	2	coarse sand, dense, dry, non-plastic.

<Figure 5.9> Site 1 Upstream of Dam

LOCATION	COMPOSITION		SOIL CLASSIFICATION
	Grain Size Distribution	Passing (%)	SANDY GRAVEL (ALLUVIUM)
Site 2	Gravel	51	Mottled Grey- white Brown, fine to
of Dam)	Sand	49	coarse sub rounded gravel, fine to
	Silt	0	coarse sand, dense, non-plastic.

<Figure 5.10> Site 2 Downstream of Dam

LOCATION	COMPOSITION		SOIL CLASSIFICATION	
	Grain Size Distribution	Passing (%)	SANDY GRAVEL (ALLUVIUM):	
Site 3	Gravel	63	Mottled Grey- white, Brown, fine to	
(Power House)	Sand	36	gravel, fine to coarse sand, trace of	
	Silt	1	silt non-plastic	

<Figure 5.11 > Site 3 Power House

<Table 5.17 > Site 5

LOCATION	COMPOSITION		SOIL CLASSIFICATION
Site 5 (Varamali)	Grain Size Distribution	Passing (%)	SAND (ALLUVIUM): Mottled Grey White- Brown, trace of gravel and silt, dry, non-plastic.
	Gravel	0	
	Sand	10	
	Silt	90	

<Figure 5.12 > Site 5 Varamali Village

LOCATION	COMPOSITION		SOIL CLASSIFICATION		
Site 6 (Ngalimbiu Bridge)	Grain Size Distribution	Passing (%)	GRAVELLY SAND (ALLUVIUM): Mottled Grey – White Brown, fine to		
	Gravel	87			
	Sand	12	coarse sub rounded gravel, fine to		
	Silt	1	coarse sand, dense, dry, non-plastic.		

<Table 5.18 > Site 6

<Figure 5.1<u>3</u>> Site 6 Ngalimbiu Bridge

5.4 Discussions and Conclusions

In previous sections, measurements and related analysis of discharge, suspended sediment load and bed load were presented as summarized below.

- River discharges were measured at six (6) locations, i.e. upstream of dam, downstream of dam, powerhouse, Tony river, Varamali Village and Ngalimbiu Bridge. Based on measurement data which is considered as low to medium flow, rating curves (stage-discharge relationship) at each measurement site were derived. For the future measurement since resumption of field measurement in October 2021, measurements will be made at only four points, except the locations Power House and Tony River.

- When installing river measuring facilities such as cableway and automatic gauging equipment, the results of laboratory analysis such as PSD and TSS will be described in the report later in consideration of field measurement and observation results and local conditions.

- For examination of suspended sediment load, river water were sampled at five (5) measurement sites except the site 4 Tony river. Sampling were made for relatively low to medium flow conditions and corresponding TSS was found to be relatively low. For the dam site, a TSS-Q curve based on the measured data from two sites (upstream and downstream of the dam) was derived and proposed in a graph with a curve equation. Analysis of particle size and mineralogy for sampled suspended sediment could not be conducted due to insufficient amount of TSS in sampled water. Similarly to river discharge measurement, measurements of suspended sediment will be made at only four points, except the locations Power House and Tony River.

- Bed load materials were sampled <u>and analyzed in terms of</u> particle size and mineral composition. However, analysis results lack for information to evaluate risk of abrasion due to hard minerals and <u>analysis of bed load and suspended load should be made up with more details.</u>

In addition to the above, further measurement of river discharge and suspended sediment needs to be conducted as collected data up to date is relatively limited and does not cover full flow regimes including flooding conditions. It is expected that collection of river flow and suspended sediment data will be enhanced when automatic gauges are installed at the site 1 and site 2, i.e. the upstream of dam and the downstream of dam. As river flow and sediment measurement data is accumulated, corresponding update of the rating curves and sediment load should be made based on increased reliability and coverage of data. For details of proposed plan of river flow and sediment monitoring, refer to Appendix-10.

It is emphasized that, according to discussions with DSAP and OE, future measurement will be more focused on high flows in consideration of its importance and laboratory analysis for bed load and suspended load will include weighing, particle size distribution, composition and mineralogy, hardness test, etc. as applicable.

As mentioned earlier, discharge and sediment monitoring was resumed in October and is to continue throughout the construction period, i.e. a few years. Thus, with respect to submission of monitoring results and revision of this document, the following is recommended.

- Collected measurement results will be submitted as a separate document including full details of measurement, lab tests and analysis regularly based on contractual requirements at a quarterly basis until installing automatic gauging equipment and at a monthly basis after installation of automatic gauging equipment as the volume of monitoring data will significantly increase.

- The main report, i.e. this document E-GE-CVHH-R0-10130 (Currently Rev.D), is to be finalized with comprehensive inclusion of all measurement results and analysis upon completion of dam construction.

5.5 References

Peter. S Roy., 1990: Quaternary Geology of the Guadalcanal Plain and adjacent Seabed, Solomon Islands.

CCOP/SOPAC Technical Report 61: 99 pages, 30 figures.

Geology of Honiara, MNR, 1979.

Hackman, B., 1979, Geology of the Honiara Area. Hong Kong: Libra Press Limited.

AS1726-1993: Geotechnical Site Investigation and AS1289.3.6.1: Standard Practice for Classification of Soils.

AS1289.1.2.1 Sampling and Preparation of Disturbed samples – Standard Method.

AS1289.3.6.1 Particle Size Distribution, Standard Sieving.

Greg Schellenberg, C. Richard Donnelly, (2020) dealing with Sediment: Effects on Dams and Hydropower Generation issue 1 volume 25.

Appendixes

- Appendix-1 Photographs of field reconnaissance
- Appendix-2 Current Meter
- Appendix-3 Certification of Current Meter
- Appendix-4 Measuring Equipments
- Appendix-5 Total Suspended Solids (TSS) EPA method
- Appendix-6 Discharge Measurement Data
- Appendix-7 Geochemical Lab Report
- Appendix-8 Particle size Distribution Reports
- Appendix-9 Laboratory Testing Photos
- <u>Appendix-10 Proposed Hydrological Monitoring Plan</u> (For Upstream & Downstream of Dam During Construction)

Appendix-1 Photographs of field reconnaissance

Site 1. Upstream of dam

Site 2. Downstream of dam

Site 3. Power house

13) Power house – upstream view	14) Power house – downstream view
15) Power house – measuring line (1)	16) Power house – measuring line (2)
17) Power house – discharge measuring (1)	18) Power house – discharge measuring (2)
Site 4. TONY River

19) TONY River – junction of TONY and TINA Rivers	20) TONY River – upstream view
21) TONY River – discharge measuring	

Site 5. Vuramali Village

22) Vuramali Village – upstream view	23) Vuramali Village – downstream view
24) Vuramali Village – measuring line	25) Vuramali Village – discharge measuring (1)
26) Vuramali Village – discharge measuring (2)	

Site 6. Ngalimbiu Bridge

Appendix-2 Current Meter

The MF Pro model, which is an electronic flowmeter from OTT Inc., is selected to automatically measure the water level and flow rate in consideration of the situation of the Tina River. According to the test certification, the measurement range of MF pro is 0-6 m/s. And the accuracy is \pm 2 % (0.015 m/s) at 0-3 m/s and \pm 4 % (0.015 m/s) at 3-5 m/s.

Item	Technical data	Photography		
Measurement method	Magnetic-inductive			
Measuring range (m/s)	0 – 6			
Accuracy at 0-3 m/s	\pm 2 % (0.015 m/s)			
Accuracy at 3-5 m/s	\pm 4 % (0.015 m/s)			
Methods for discharge calculation	EN ISO 748			

<Table A2-1> Technical data of OTT MF Pro

Appendix-3 Certification of Current Meter

FAT MF pro		L. S.	OTT
– Magnetisch Induktiver Strömungssenso	or	Artikel-Nr, Part Nr.	1040500595-0D
Magnetic Flow Sensor		Bearbeiter, Agent	administrator
Abnahmeprüfzeugnis 3.1, Factory Acce DIN EN 10204:2004	Datum, Date Unterschrift, Signature	04.03.2020 T M	
OTT Serien-Nr.	OTT Serial No.		339217
Software			
Firmware Version Bootloader Version	Application Versio Bootloader Versio	n on	1.02
Druckzelle	Pressure cell		Ergebnis/Result
Wassertank mit	Tank with	Toleranz [m]	
Pegelstand	certain stage	Tolerance [m]	
	0.610 m	+/- 0.013	0.604
Leitfähigkeitsmessung	Conductivity measure	ement	
Verifikation der Leitfähigkeit	Conductivity verification	n	PASS
Geschwindigkeitsmessung	Velocity measuremen	nt	
Geschwindigkeit	Velocity[m/s]	Sollwert [m/s] Target [m/s] min. max.	
0.000 m/s	0.000	-0.015 0.015	-0.000
0.593 m/s	0.593	0.580 0.606	0.589
Nullpunkttest	Zero Stability Check		X
Speichertest	Non-Volatile Memory Test	:	X
Kabeltest	Cable Test		X
Schnittstellentest	Interface Check		X
HydroService Reparatur, Repair Vertrieb, Sales	Telefon, Phone F 0831 / 5617-430 0 0831 / 5617-433 0 0831 / 5617-0 0	Fax 1 831 / 5617-439 1 831 / 5617-439 1 831 / 5617-209 5	E - Mail HydroService@ott.com Repair@ott.com Sales@ott.com

Certification issued by the manufcturer (OTT)

Certification issued by KICT (Korea Institute of Civil Engineering and Building Technology)

Certification issued by KICT (Korea Institute of Civil Engineering and Building Technology)

G4B(www.g4b.go.kr)진위확인코드 : 3cpfe9ZYMto=

Appendix-4 Measuring Equipments

Appendix-5 Total Suspended Solids(TSS) – EPA method

Analytical Parameter	Contract Required Detection Limit(CRDL)	Technical and Contract Holding Times	Preservation				
Total Suspended Solids(TSS)	10 mg/L	Technical: 7 days from collection; Contract: 5 days from receipt at laboratory	Cool to 4℃±2℃				

<Table A5-1> Summary of Contract Required Detection Limits, Holding times, and Preservation for Total Suspended Solids(TSS)

Follow the procedure outlined in EPA method 160.2 for the analysis of samples for TSS.

Weigh solid residue to a constant weight, defined as two consecutive weight measurements differing by less than 0.5 mg, or less than 4%, whichever is smaller.

Data Calculations and Reporting Units:

Calculate the sample results according to Section 8 of EPA Method 160.2. Report sample results in concentration units of milligram per liter (mg/L) as total suspended solids. Report TSS concentrations that are less than 100 mg/L to 2 significant figures, and TSS concentrations that are greater than or equal to 100 mg/L to 3 significant figures.

For rounding results, adhere to the following rules:

- a) If the number following those to be retained is less than 5, round down;
- b) If the number following those to be retained is greater than 5, round up; or
 - c) If the number following the last digit to be retained is equal to 5, round down if the digit is even, or round up if the digit is odd.

All records of analysis and calculations must be legible and sufficient to recalculate all sample concentrations and QC results. Include an example calculation in the data package.

QC Element	Frequency	Acceptance Criteria	Corrective Action
Analytical Balance	Daily	Difference < 0.5mg	1. Identify and document problem
Check: Weights of			2. Verify before sample analysis
100mg, 1g, and			
100g			
Method Blank(mb)	One per	< CRDL	1. If lowest sample concentration is
	batch or		more than 10x the blank conc., no
	SDG(1 per		action
	20 samples		2. If samples are non-detected, no
	minimum)		action
			3. If detected sample concentrations are
			less than 10x blank conc., all associated
			samples must be prepared again with
			another method blank and reanalyzed
Duplicate	One per	RPD<20% for	1. Flag associated data with an "*"
Sample(DUP)	batch or	samples > 5x CRDL;	
	SDG(1 per	± CRDL for samples	
	20 samples	<5x CRDL	
	minimum)		
One set (two	One set	±15% from	1. Terminate analysis
concentration levels)	batch or	expected	2. Identify, document, and correct the
mineral reference	SDG(1 set 20	concentration	problem
samples	samples		3. Reanalyze all associated samples
	minimum)		

<Table A5-2> Summary of Internal Quality Control Procedures for Total Suspended Solids(TSS)

SDG – Sample Delivery Group – each case of field samples received; or each 20 field samples within a case; or each 14 calendar day period during which field samples in a case are received.

Use sample aliquots of 100mL. If the weight of captured residue is less than 1.0mg, increase the sample volume (up to 200mL) to provide at least 1.0mg of residue and repeat the analysis.

1

Appendix-6 Discharge Measurement Data

Site 1. Upstream of Dam

(Tue)30-Jun-2020

	Determining the Water Discharge (Q) from current meter readings							
Location:		Upstre	am of D	am				
Date:		(Tue)3	0-Jun-20	20				
Weather:		Fine						
River	Flow	Velocity	(m/s)	Depth	Width	Area	Discharge (m^3/s)	
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	Discharge (III / s)	
1	0.360	0.089	0.225	0.126	1	0.126	0.028	
2	0.537	0.412	0.475	0.274	1	0.274	0.130	
3	0.565	0.456	0.511	0.405	1	0.405	0.207	
4	1.836	1.207	1.522	0.405	1	0.405	0.616	
5	1.165	1.917	1.541	0.665	1	0.665	1.025	
6	1.843	1.842	1.843	0.578	1	0.578	1.065	
7	1.048	1.290	1.169	0.700	1	0.700	0.818	
8	1.065	2.055	1.560	0.592	1	0.592	0.924	
9	0.906	1.298	1.102	0.669	1	0.669	0.737	
10	0.390	0.504	0.447	0.490	1	0.490	0.219	
11	0.120	0.219	0.170	0.363	1	0.363	0.062	
12	0.178	0.139	0.159	0.231	1	0.231	0.037	
13	0.228	0.264	0.246	0.210	1	0.210	0.052	
14	0.077	0.087	0.082	0.320	1	0.320	0.026	
15	0.074	0.169	0.122	0.345	1	0.345	0.042	
16	0.021	0.024	0.023	0.247	1	0.247	0.006	
	otal			16	6.620	5.993		
Water Level Depth (m)				0.700				
Total Area (A)		6.620						
Total Discharge	5.993							

(Tue)07-Jul-2020

С	Determin	ing the	Water D	ischarge (Q)) from curre	nt meter read	lings
Location:		Upstre	am of D	am			
Date:		(Tue)0	7-Jul-202	20			
Weather:		Fine					
River	Flow	Velocity	r (m/s)	Depth	Width	$\Lambda rop (m^2)$	Discharge (m ³ /s)
Width (m)	V1	v2	Mean	(m)	(m)	Area (III-)	Discharge (III-75)
1	0.233	0.296	0.265	0.083	1	0.083	0.022
2	0.38	0.521	0.451	0.106	1	0.106	0.048
3	0.498	0.835	0.667	0.159	1	0.159	0.106
4	0.727	0.997	0.862	0.330	1	0.33	0.284
5	1.286	1.549	1.418	0.210	1	0.21	0.298
6	1.503	1.984	1.744	0.520	1	0.52	0.907
7	1.326	1.829	1.578	0.550	1	0.55	0.868
8	0.95	1.818	1.384	0.473	1	0.473	0.655
9	0.872	1.772	1.322	0.620	1	0.62	0.820
10	0.802	1.177	0.990	0.472	1	0.472	0.467
11	0.789	1.134	0.962	0.479	1	0.479	0.461
12	0.807	0.902	0.855	0.210	1	0.21	0.179
13	0.178	0.039	0.109	0.178	1	0.178	0.019
Total					13	4.390	5.133
Water Level Dep				0.	620		
Total Area (A)					4.	390	
Total Discharge (Q) 5.133							

Determining the Water Discharge (Q) from current meter readings									
Location:		Upstream of Dam							
Date:		(Tue)14-Jul	-2020						
Weather:		Fine							
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.019	0.055	0.037	0.084	1	0.084	0.003		
2	0.153	0.222	0.188	0.110	1	0.11	0.021		
3	0.315	0.579	0.447	0.237	1	0.237	0.106		
4	0.764	1.099	0.932	0.396	1	0.396	0.369		
5	0.879	1.293	1.086	0.512	1	0.512	0.556		
6	0.794	1.589	1.192	0.577	1	0.577	0.687		
7	0.816	1.683	1.250	0.450	1	0.45	0.562		
8	0.942	1.716	1.329	0.440	1	0.44	0.585		
9	0.899	1.255	1.077	0.476	1	0.476	0.513		
10	0.582	1.039	0.811	0.436	1	0.436	0.353		
11	0.809	1.002	0.906	0.341	1	0.341	0.309		
12	0.328	0.639	0.484	0.180	1	0.18	0.087		
Total					12	4.239	4.151		
Water Level Depth (m)			0.577						
Тс	otal Area (A	()	4.239						
Tota	l Discharge	(Q)			4.151				

(Tue)14-Jul-2020-TSS measurement

(Tue)04-Aug-2020

Determining the Water Discharge (Q) from current meter readings									
Location:	Location: Upstream of Dam								
Date:	ate: (Tue)04-Aug-2020								
Weather:	eather: Fine Weather (Dry season)								
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.014	0.034	0.024	0.144	1	0.144	0.003		
2	0.133	0.223	0.178	0.278	1	0.278	0.049		
3	0.415	0.822	0.619	0.394	1	0.394	0.244		
4	0.866	1.181	1.024	0.416	1	0.416	0.426		
5	0.94	1.567	1.254	0.492	1	0.492	0.617		
6	0.822	1.227	1.025	0.548	1	0.548	0.561		
7	0.776	1.019	0.898	0.447	1	0.447	0.401		
8	0.628	1.041	0.835	0.496	1	0.496	0.414		
9	0.452	0.686	0.569	0.410	1	0.41	0.233		
10	0.354	0.506	0.430	0.347	1	0.347	0.149		
Total					10	3.972	3.10		
Water	Level Dept	h (m)		0.450					
То	tal Area (A	()			3.972				
Total Discharge (Q)					3.098				

٦

Determining the Water Discharge (Q) from current meter readings									
Location:	Upstream of Dam								
Date:		(Tue)25-Aug-2020							
Weather:	Isolated Shower (No flooding)								
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.201	0.489	0.345	0.221	1	0.221	0.076		
2	0.28	0.460	0.370	0.283	1	0.283	0.105		
3	0.475	0.935	0.705	0.374	1	0.374	0.264		
4	0.627	1.440	1.034	0.467	1	0.467	0.483		
5	0.707	1.302	1.005	0.434	1	0.434	0.436		
6	0.561	1.197	0.879	0.477	1	0.477	0.419		
7	0.567	1.040	0.804	0.446	1	0.446	0.358		
8	0.401	0.760	0.581	0.460	1	0.46	0.267		
9	0.38	0.775	0.578	0.417	1	0.417	0.241		
10	0.305	0.560	0.433	0.339	1	0.339	0.147		
	Total			10	3.92	2.80			
Water	Level Dept	h (m)			0.430				
То	tal Area (A)			3.918				
Total Discharge (Q)			2.795						

(Tue)25-Aug-2020

(Tue)01-Sep-2020

Determining the Water Discharge (Q) from current meter readings									
Location:	tion: Upstream of Dam								
Date:	(Tue)01-Sep-2020								
Weather:	Isolated Shower								
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.459	0.482	0.471	0.185	1	0.185	0.087		
2	0.563	0.641	0.602	0.335	1	0.335	0.202		
3	0.544	0.979	0.762	0.362	1	0.362	0.276		
4	0.625	1.147	0.886	0.448	1	0.448	0.397		
5	0.748	1.245	0.997	0.517	1	0.517	0.515		
6	0.681	1.119	0.900	0.42	1	0.42	0.378		
7	0.588	0.982	0.785	0.455	1	0.455	0.357		
8	0.465	0.876	0.671	0.484	1	0.484	0.325		
9	0.387	0.721	0.554	0.394	1	0.394	0.218		
10	0.359	0.639	0.499	0.335	1	0.335	0.167		
Total					10	3.94	2.92		
Water Level Depth (m)				0.450					
То	tal Area (A	()			3.935				
Total	Discharge	(Q)			2.922				

٦

(Wed)07-Oct-2020

	Determi	ning the Wa	ter Discharg	e (Q) from	current mete	er readings	
Location:		Upstream	of Dam				
Date:		(Wed)07-0	ct-2020				
Weather:		Isolated sh	owers (Rive	r condition:	after flood)		
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.18	0.341	0.261	0.548	1	0.548	0.143
2	0.47	1.168	0.819	0.566	1	0.566	0.464
3	0.588	1.553	1.071	0.625	1	0.625	0.669
4	0.947	1.958	1.453	0.65	1	0.650	0.944
5	1.232	2.118	1.675	0.524	1	0.524	0.878
6	0.75	1.537	1.144	0.705	1	0.705	0.806
7	0.663	1.237	0.950	0.695	1	0.695	0.660
8	0.532	1.106	0.819	0.354	1	0.354	0.290
9	0.543	1.08	0.812	0.391	1	0.391	0.317
10	0.605	0.92	0.763	0.325	1	0.325	0.248
11	0.587	1.004	0.796	0.307	1	0.307	0.244
12	0.586	0.862	0.724	0.281	1	0.281	0.203
13	0.528	0.827	0.678	0.285	1	0.285	0.193
		Total			13	6.26	6.06
Water	Level Dept	h (m)			0.70		
То	otal Area (A)			6.26		
Total	Discharge	(Q)			6.06		

(Tue)13-Oct-2020

	Determir	ning the Wa	ter Discharg	e (Q) from	current meto	er readings				
Location:		Upstream	of Dam							
Date:		(Tue)13-Oc	:t-2020							
Weather:		Cloudy & I	Haze							
River	Flov	w Velocity (r	n/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.197	0.229	0.213	0.179	1	0.179	0.038			
2	0.547	0.711	0.629	0.353	1	0.353	0.222			
3	0.7	1.153	0.927	0.51	1	0.51	0.473			
4	1.026	1.537	1.282	0.546	1	0.546	0.700			
5	1.52	2.656	2.088	0.685	1	0.685	1.430			
6	0.885	1.254	1.070	0.669	1	0.669	0.715			
7	0.828	1.171	1.000	0.635	1	0.635	0.635			
8	0.705	0.979	0.842	0.681	1	0.681	0.573			
9	0.745	0.96	0.853	0.645	1	0.645	0.550			
10	0.319	0.339	0.329	0.617	1	0.617	0.203			
11	0.031	0.155	0.093	0.256	1	0.256	0.024			
		Total			11	5.78	5.56			
Water	Level Dept	h (m)	0.68							
Т	otal Area (A	.)			5.78					
Tota	l Discharge	(Q)			5.56					

٦

	Determi	ning the Wa	ter Discharg	e (Q) from o	current mete	er readings				
Location:		Upstream	of Dam							
Date:		(Tue)20-Oc	:t-2020							
Weather:		Isolated Sh	nowers							
River	Flov	w Velocity (r	n/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.31	0.394	0.352	0.141	1	0.141	0.050			
2	0.47	0.63	0.550	0.37	1	0.37	0.204			
3	0.698	0.969	0.834	0.579	1	0.579	0.483			
4	0.964	1.791	1.378	0.657	1	0.657	0.905			
5	1.325	2.952	2.139	0.641	1	0.641	1.371			
6	0.951	2.052	1.502	0.771	1	0.771	1.158			
7	1.114	1.704	1.409	0.724	1	0.724	1.020			
8	0.776	0.912	0.844	0.901	1	0.901	0.760			
9	0.696	1.01	0.853	0.736	1	0.736	0.628			
10	0.54	0.715	0.628	0.624	1	0.624	0.392			
11	0.346	0.366	0.356	0.35	1	0.35	0.125			
12	0.119	0.157	0.138	0.227	1	0.227	0.031			
		Total			12	6.72	7.13			
Water	r Level Dept	h (m)	0.90							
Т	otal Area (A)			6.72					
Tota	l Discharge	(Q)	7.13							

(Tue)20-Oct-2020

(Tue)27-Oct-2020-Float measurement

Distance(m)	I	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	37.0	38.0	38.0	39.0	39.0	38.2	1.31	0.9	14.5	22.12	28.89

(Tue)03-Nov-2020-Float measurement

Distance(m)		No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	45.0	43.0	42.0	40.0	37.0	41.4	1.21	0.84	14	19.85	24.06

(Tue)17-Nov-2020-Float/TSS measurement

Distance(m)		No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	36.0	33.1	39.6	41.6	41.3	38.3	1.05	0.79	13.5	17.96	18.81

		No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	37.6	31.7	36.6	34.2	30.2	34.1	1.18	0.89	14	21.74	25.58
40	32.6	29.6	31.0	33.9	31.6	31.8	1.26	0.89	14	21.74	27.37
40	33.6	31.3	37.8	30.3	37.5	34.1	1.18	0.89	14	21.74	25.58

(Tue)29-Dec-2020-Float measurement

(Thu)14-Jan-2021-Float measurement

Distance(m)		No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	32.3	30.4	26.9	25.7	23.8	27.8	1.44	0.99	16	25.52	36.64
40	24.1	29.2	24.2	24.3	26.3	25.6	1.56	0.99	16	25.52	39.94
40	26.2	26.1	33.1	27.9	30.6	28.8	1.39	0.99	16	25.52	35.43

(Tue)02-Feb-2021-Float measurement

Distance (m)		No. Tria	ls (Time	in Sec.))	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
40	28.4	26.5	26.9	30.1	29.4	28.3	1.41	1.01	16	26.28	37.10

(Wed)10-Fed-2021-Float measurement

Time	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
12:40	40	27.56	26.35	29.97	25.90	26.56	27.27	1.47	1.06	17.00	28.17	41.41
13:40	40	25.94	25.59	29.63	24.37	25.68	26.24	1.52	1.06	17.00	28.17	42.82
14:40	40	23.71	25.75	26.63	25.37	28.93	26.08	1.53	1.06	17.00	28.17	43.10
15:40	40	27.16	26.50	27.38	25.44	26.16	26.53	1.51	1.09	17.00	29.31	44.25
16:40	40	24.13	25.22	24.88	24.81	23.35	24.48	1.63	1.12	17.00	30.44	49.62
17:40	40	24.60	23.68	21.66	21.97	24.82	23.35	1.71	1.12	17.00	30.44	52.05
18:40	40	21.93	20.97	22.40	20.56	21.31	21.43	1.87	1.12	17.00	30.44	56.92

(Thu)11-Fed-2021-Float/TSS measurement

Time	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
7:30	40	32.68	28.56	24.06	29.41	25.66	28.07	1.42	1.03	17.00	27.04	38.39
8:30	40	26.31	25.10	25.13	27.37	24.47	25.68	1.56	1.03	17.00	27.04	42.18
9:30	40	23.94	25.72	25.37	24.03	23.56	24.52	1.63	1.03	17.00	27.04	44.07
10:30	40	32.54	25.66	28.27	30.78	28.36	29.12	1.37	1.03	17.00	27.04	37.04
11:30	40	23.81	25.53	33.10	26.39	29.90	27.75	1.44	1.05	17.00	27.79	40.02
12:30	40	24.80	26.62	26.84	25.16	30.44	26.77	1.49	1.05	17.00	27.79	41.41
13:30	40	25.60	26.22	24.70	23.45	26.52	25.30	1.58	1.05	17.00	27.79	43.91
14:30	40	25.97	25.09	25.06	23.50	24.66	24.86	1.61	1.06	17.00	28.17	45.36
15:30	40	25.06	21.29	23.25	24.78	23.25	23.53	1.70	1.06	17.00	28.17	47.89
16:30	40	21.19	21.06	22.50	23.40	21.34	21.90	1.83	1.06	17.00	28.17	51.55

17:30	40	19.50	19.87	19.74	18.94	18.38	19.29	2.07	1.11	17.50	30.06	62.23
18:30	40	19.67	17.72	18.31	14.60	15.22	17.10	2.34	1.06	17.50	28.17	65.92

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
7:30	40	24.35	24.43	25.78	26.23	23.97	24.95	1.60	38.39	16.50	27.04	43.26
8:30	40	26.07	24.79	25.16	28.06	23.97	25.61	1.56	42.18	16.70	27.79	43.36
9:30	40	22.27	24.19	22.31	23.00	27.69	23.89	1.67	44.07	16.90	27.79	46.41
10:30	40	21.22	22.31	23.68	22.91	21.32	22.29	1.79	37.04	17.00	28.93	51.78
11:30	40	21.57	22.12	21.50	21.81	25.31	22.46	1.78	40.02	17.00	28.93	51.49
12:30	40	22.90	23.08	21.50	25.69	21.50	22.93	1.74	41.41	17.20	30.06	52.31
13:30	40	22.76	24.85	20.49	22.10	23.50	22.74	1.76	43.91	17.30	30.06	52.91
14:30	40	23.47	22.84	23.71	22.76	23.47	23.25	1.72	45.36	17.40	30.06	51.71
15:30	40	23.72	22.38	23.12	24.09	22.97	23.26	1.72	47.89	17.40	30.44	52.36
16:30	40	23.44	23.40	24.75	23.47	24.03	23.82	1.68	51.55	17.50	30.44	51.14
17:30	40	26.13	24.00	21.15	21.28	25.49	23.61	1.69	62.23	26.00	30.82	52.21
18:30	40	26.26	22.02	23.60	23.74	21.19	23.36	1.71	65.92	26.00	31.57	54.06

(Fri)12-Fed-2021-Float/TSS measurement

(Thu)18-Fed-2021-Float/TSS measurement

T :	Distance		No. Tri	als (Time i	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
13:00	50	36.00	33.00	32.00	32.00	32.00	33.00	1.52	1.01	17.00	26.28	39.95
14:00	50	32.00	30.00	32.00	30.00	30.00	30.80	1.62	1.06	17.50	28.17	45.64
15:00	50	32.00	32.00	32.00	26.00	26.00	29.60	1.69	1.09	18.00	29.31	49.53

(Fri)19-Fed-2021-Float measurement

T :	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
10:00	50	37.00	38.00	40.00	40.00	40.00	39.00	1.28	1.01	24.00	26.28	33.64
11:00	50	33.00	34.00	33.00	33.00	33.00	33.20	1.51	1.31	24.00	38.07	57.48
14:30	50	32.00	32.00	32.00	30.00	28.00	30.80	1.62	1.41	25.50	42.58	68.98
15:30	50	30.00	30.00	30.00	32.00	30.00	30.40	1.64	1.42	25.50	43.03	70.57

(Thu)25-Fed-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
9:00	40	13.22	12.83	13.52	12.68	12.71	12.99	3.08	1.14	26.00	31.20	96.04
10:00	40	13.87	13.55	13.81	14.43	12.85	13.70	2.92	1.11	26.00	30.06	87.77
11:00	40	14.21	14.87	14.10	14.56	14.69	14.49	2.76	1.11	26.00	30.06	83.01
12:00	40	14.51	14.21	14.48	14.00	14.83	14.41	2.78	1.11	26.00	30.06	83.47
13:00	40	12.77	13.35	13.18	12.96	13.43	13.14	3.04	1.11	26.00	30.06	91.53
14:00	40	13.20	13.58	12.91	13.13	12.90	13.15	3.04	1.12	26.00	30.44	92.62
15:00	40	13.52	12.79	13.29	12.94	12.99	13.11	3.05	1.14	26.00	31.20	95.20
16:00	40	13.28	13.62	13.72	13.88	13.42	13.58	2.94	1.20	26.00	33.47	98.54

17:00	40	12.87	13.06	13.82	13.58	12.58	13.18	3.03	1.20	26.00	33.47	101.56
18:00	40	12.77	12.32	13.34	12.63	13.06	12.83	3.12	1.23	26.00	34.60	107.90

T :	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
9:00	50	24.19	23.31	26.31	23.78	25.68	24.65	2.03	1.52	26.00	47.55	96.52
10:00	50	23.41	24.69	25.38	22.57	26.25	24.46	2.04	1.48	26.00	45.74	93.31
11:00	50	24.84	26.03	26.25	27.87	26.10	26.22	1.91	1.48	26.00	45.74	87.37
12:00	50	27.39	26.97	27.38	27.93	26.44	27.22	1.84	1.48	26.00	45.74	84.16
13:00	50	26.56	23.47	28.06	25.65	26.00	25.95	1.93	1.48	26.00	45.74	88.28
14:00	50	24.57	27.59	26.69	24.50	25.10	25.69	1.95	1.49	26.00	46.19	90.08
15:00	50	28.50	25.25	24.50	24.25	25.95	25.69	1.95	1.52	26.50	47.65	92.92
16:00	50	24.81	25.03	24.31	26.03	25.10	25.06	2.00	1.54	27.00	48.59	97.18
17:00	50	26.31	23.81	27.63	23.65	23.53	24.99	2.00	1.58	27.50	50.47	100.93
18:00	50	29.97	22.82	23.09	23.09	23.50	24.49	2.04	1.64	27.50	53.28	108.69

(Fri)26-Fed-2021-Float measurement

(Thu)04-Mar-2021-Float measurement

T :	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
9:00	50	23.86	22.87	23.13	23.31	22.91	23.22	2.15	1.64	29.50	53.28	114.55
10:00	50	24.52	22.75	23.83	23.91	22.14	23.43	2.13	1.64	30.00	53.28	113.48
11:00	50	23.01	22.78	23.52	23.3	24.48	23.42	2.14	1.64	30.00	53.28	114.02
12:00	50	23.25	22.39	23.83	23.79	23.93	23.44	2.13	1.67	30.25	54.68	116.48
13:00	50	23.48	22.65	25.60	20.74	23.65	23.22	2.15	1.67	30.25	54.68	117.57
14:00	50	24.57	22.59	22.69	23.50	23.10	23.29	2.15	1.69	30.50	55.62	119.59
15:00	50	22.16	21.50	23.96	24.59	21.76	22.79	2.19	1.72	30.50	57.03	124.89
16:00	50	22.59	21.52	21.50	22.52	24.38	22.50	2.22	1.75	30.75	58.44	129.73
17:00	50	20.35	21.78	24.36	20.18	23.13	21.96	2.28	1.75	30.85	58.44	133.23
18:00	50	20.05	20.46	19.82	20.17	21.28	20.36	2.46	1.78	31.00	59.84	147.21

(Fri)05-Mar-2021-Float measurement

Time	Distance		No. Tri	als (Time i	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
9:00	50	19.87	19.31	20.19	19.13	19.86	19.67	2.54	1.78	31.50	59.84	152.00
10:00	50	18.01	19.78	19.52	19.3	17.48	18.82	2.66	1.72	32.00	57.03	151.70
11:00	50	18.42	19.39	18.34	19.79	20.13	19.21	2.60	1.82	32.40	61.72	160.47
12:00	50	19.47	19.56	21.6	18.74	18.65	19.60	2.55	1.83	32.40	62.19	158.58
13:00	50	19.18	18.52	19.96	20.95	18.75	19.47	2.57	1.87	32.45	64.06	164.64
14:00	50	20.59	18.73	17.15	19.22	20.61	19.26	2.60	1.87	32.65	64.06	166.56
15:00	50	17.18	19.03	17.13	19.38	17.81	18.11	2.76	1.87	32.70	64.06	176.81
16:00	50	19.18	16.74	17.15	17.18	17.82	17.61	2.84	1.90	32.80	65.47	185.93
17:00	50	23.73	16.28	17.26	17.27	16.39	18.19	2.75	1.92	33.00	66.41	182.62

(Fri)11-Jun-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)

10:30	35	27.53	30.72	24.6	24.85	26.26	26.79	1.31	0.58	13.00	10.05	13.13
11:30	35	28.54	27.98	27.32	26.86	26.55	27.45	1.28	0.58	13.00	10.05	12.82
12:30	35	28.04	27.51	27.2	26.77	28.80	27.66	1.27	0.58	13.00	10.05	12.72
13:30	35	27.68	26.37	27.18	27.45	28.61	27.46	1.27	0.58	13.00	10.05	12.81

<u>(Fri)11-Jun-2021</u>

	<u>Determi</u>	ining the Wa	ter Discharg	e (Q) from c	urrent mete	r readings	
Location:		Upstream o	of Dam				
Date:		<u>(Fri)11-Jun</u> ∙	-2021				
Weather:		Isolated Sh	owers		•		-
<u>River</u>	<u>Flo</u>	w Velocity (n	<u>n/s)</u>	Depth	<u>Width</u>	<u>Area</u>	Discharge
Width (m)	<u>V1</u>	<u>v2</u>	<u>Mean</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>
<u>1</u>	<u>0.057</u>	<u>0.176</u>	<u>0.117</u>	0.384	<u>1</u>	0.384	0.045
<u>2</u>	<u>0.372</u>	0.404	<u>0.388</u>	<u>0.402</u>	<u>1</u>	<u>0.402</u>	<u>0.156</u>
<u>3</u>	<u>0.503</u>	<u>1.226</u>	0.865	0.46	<u>1</u>	0.46	0.398
<u>4</u>	0.563	1.068	0.816	0.549	<u>1</u>	0.549	0.448
<u>5</u>	<u>0.738</u>	<u>1.523</u>	<u>1.131</u>	0.542	<u>1</u>	0.542	<u>0.613</u>
<u>6</u>	0.68	<u>1.364</u>	<u>1.022</u>	0.559	<u>1</u>	0.559	0.571
<u>7</u>	<u>0.587</u>	<u>1.452</u>	<u>1.020</u>	<u>0.751</u>	<u>1</u>	<u>0.751</u>	<u>0.766</u>
<u>8</u>	0.542	1.223	0.883	0.453	<u>1</u>	<u>0.453</u>	0.400
<u>9</u>	<u>0.322</u>	<u>1.155</u>	<u>0.739</u>	<u>0.597</u>	<u>1</u>	<u>0.597</u>	<u>0.441</u>
<u>10</u>	0.609	1.523	1.066	<u>0.59</u>	<u>1</u>	0.59	0.629
<u>11</u>	<u>0.184</u>	<u>0.493</u>	<u>0.339</u>	<u>0.422</u>	<u>1</u>	<u>0.422</u>	<u>0.143</u>
<u>12</u>	<u>0.234</u>	0.716	0.475	0.532	<u>1</u>	0.532	0.253
<u>13</u>	0.568	0.778	0.673	0.544	<u>1</u>	0.544	0.366
		<u>Total</u>			<u>13</u>	<u>6.79</u>	<u>5.23</u>
Water Level	Depth (m)				0.70		
Total Area ((A)				6.79		
Total Discha	arge (Q)				5.23		

(Thu)17-Jun-2021-Float measurement

Time	Distance		No. Trials (Time in Sec.)					Velocity	Depth	Width	Area	Discharge
Inne	<u>(m)</u>	1	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>

10:00	<u>35</u>	<u>34</u>	34	<u>35</u>	<u>36</u>	<u>32</u>	<u>34.20</u>	<u>1.02</u>	<u>0.705</u>	<u>15.00</u>	9.63	<u>9.85</u>
11:00	35	33	35	32	33	34	33.40	1.05	0.712	15.00	9.80	10.27
12:00	35	34	32	34	30	34	32.80	1.07	0.715	15.00	9.88	10.54
13:00	<u>35</u>	33	33	33	<u>31</u>	35	33.00	<u>1.06</u>	0.728	<u>15.00</u>	10.20	10.82
14:00	<u>35</u>	<u>35</u>	<u>32</u>	<u>31</u>	<u>35</u>	<u>32</u>	33.00	<u>1.06</u>	0.715	15.00	<u>9.88</u>	<u>10.47</u>

(Thu)17-Jun-2021

	Determi	ning the Wat	ter Dischargo	e (Q) from cu	irrent meter	readings			
Location:		Upstream o	of Dam						
Date:		<u>(Thu)17-Ju</u>	1-2021						
Weather:		Isolated Sh	owers						
River	<u>Flo</u>	w Velocity (m/s)	Depth	<u>Width</u>	Area	Discharge		
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>		
<u>1</u>	<u>0.078</u>	<u>0.367</u>	0.223	0.366	<u>1</u>	0.366	<u>0.081</u>		
<u>2</u>	0.239	0.48	0.360	0.521	<u>1</u>	0.521	<u>0.187</u>		
<u>3</u>	<u>0.484</u>	<u>0.67</u>	<u>0.577</u>	<u>0.229</u>	<u>1</u>	0.229	<u>0.132</u>		
4	0.402	<u>1.177</u>	0.790	0.648	<u>1</u>	0.648	0.512		
<u>5</u>	<u>0.801</u>	1.208	<u>1.005</u>	<u>0.705</u>	<u>1</u>	0.705	<u>0.708</u>		
<u>6</u>	0.823	1.276	1.050	0.651	<u>1</u>	0.651	0.683		
<u>7</u>	<u>0.784</u>	<u>1.134</u>	<u>0.959</u>	0.602	<u>1</u>	0.602	<u>0.577</u>		
8	0.425	0.602	0.514	0.681	<u>1</u>	0.681	0.350		
<u>9</u>	<u>0.382</u>	<u>0.853</u>	<u>0.618</u>	<u>0.713</u>	<u>1</u>	<u>0.713</u>	<u>0.440</u>		
<u>10</u>	0.358	1.522	0.940	0.582	<u>1</u>	0.582	0.547		
<u>11</u>	<u>0.341</u>	<u>0.818</u>	<u>0.580</u>	<u>0.477</u>	<u>1</u>	0.477	0.276		
<u>12</u>	0.56	0.753	0.657	0.425	<u>1</u>	0.425	0.279		
<u>13</u>	0.345	0.637	0.491	<u>0.411</u>	<u>1</u>	0.411	0.202		
<u>14</u>	0.334	0.538	0.436	0.469	<u>1</u>	0.469	0.204		
<u>15</u>	0.004	0.127	0.066	0.128	<u>1</u>	0.128	0.008		
		Total	<u>15</u> <u>7.01</u> <u>4.98</u>						
Water Le	evel Depth	(m)	0.81						
Total Ar	ea (A)		<u>7.01</u>						
Total Dis	scharge (Q)				4.98				

(Fri)18-Jun-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Inne	<u>(m)</u>	1	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
9:00	35	46	44	45	44	44	44.60	0.78	0.813	15.00	12.37	<u>9.71</u>
10:00	<u>35</u>	<u>45</u>	<u>45</u>	<u>46</u>	<u>43</u>	<u>42</u>	44.20	<u>0.79</u>	<u>0.816</u>	<u>15.00</u>	12.46	<u>9.87</u>
<u>11:00</u>	<u>35</u>	<u>42</u>	<u>43</u>	<u>45</u>	<u>43</u>	<u>42</u>	43.00	<u>0.81</u>	<u>0.835</u>	<u>15.00</u>	<u>13.04</u>	<u>10.61</u>

<u>12:00</u>	<u>35</u>	44	<u>42</u>	<u>43</u>	<u>46</u>	<u>40</u>	43.00	<u>0.81</u>	0.830	<u>15.00</u>	<u>12.89</u>	<u>10.49</u>
13:00	35	<u>43</u>	<u>46</u>	42	<u>46</u>	<u>45</u>	44.40	0.79	0.810	15.00	12.28	9.68
<u>11:00</u>	35	45	<u>43</u>	<u>40</u>	<u>40</u>	<u>45</u>	42.60	0.82	0.825	15.00	12.74	10.46
<u>12:00</u>	<u>35</u>	<u>42</u>	<u>38</u>	<u>43</u>	<u>45</u>	<u>41</u>	<u>41.80</u>	<u>0.84</u>	0.830	<u>15.00</u>	<u>12.89</u>	<u>10.79</u>
13:00	<u>35</u>	40	42	41	42	42	41.40	0.85	0.840	15.00	13.19	11.15

<u>(Fri)18-Jun-2021</u>

	<u>Determir</u>	ning the Wat	er Discharge	e (Q) from cu	urrent meter	<u>readings</u>				
Location:		Upstream of	of Dam							
Date:		<u>(Fri)18-Jun</u>	-2021							
Weather:		Isolated Sh	owers	1	1	1				
River	Flor	w Velocity (r	n/s)	Depth	Width	Area	Discharge			
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>			
<u>1</u>	<u>0.118</u>	<u>0.189</u>	<u>0.154</u>	0.382	<u>1</u>	<u>0.382</u>	<u>0.059</u>			
<u>2</u>	0.146	0.396	0.271	0.452	<u>1</u>	0.452	<u>0.122</u>			
<u>3</u>	<u>0.412</u>	<u>0.748</u>	<u>0.580</u>	<u>0.439</u>	<u>1</u>	<u>0.439</u>	<u>0.255</u>			
<u>4</u>	0.602	1.009	0.806	0.582	<u>1</u>	0.582	0.469			
<u>5</u>	<u>0.771</u>	<u>1.109</u>	<u>0.940</u>	<u>0.701</u>	<u>1</u>	<u>0.701</u>	<u>0.659</u>			
<u>6</u>	0.707	<u>1.103</u>	0.905	0.783	<u>1</u>	<u>0.783</u>	<u>0.709</u>			
<u>7</u>	<u>0.873</u>	<u>1.438</u>	<u>1.156</u>	0.804	<u>1</u>	0.804	<u>0.929</u>			
<u>8</u>	<u>0.71</u>	0.942	0.826	0.553	<u>1</u>	<u>0.553</u>	<u>0.457</u>			
<u>9</u>	0.363	0.754	0.559	0.692	<u>1</u>	0.692	0.386			
<u>10</u>	<u>0.456</u>	0.866	0.661	<u>0.561</u>	<u>1</u>	<u>0.561</u>	<u>0.371</u>			
<u>11</u>	0.385	0.507	0.446	0.402	<u>1</u>	0.402	<u>0.179</u>			
<u>12</u>	<u>0.361</u>	0.696	<u>0.529</u>	0.563	<u>1</u>	<u>0.563</u>	<u>0.298</u>			
<u>13</u>	0.299	0.504	0.402	0.637	<u>1</u>	0.637	0.256			
<u>14</u>	0.142	0.323	0.233	0.525	<u>1</u>	0.525	0.122			
<u>15</u>	0.028	0.145	0.087	0.138	<u>1</u>	<u>0.138</u>	0.012			
		Total			<u>15</u>	7.55	<u>5.15</u>			
Water I	Level Depth	<u>(m)</u>	<u>0.80</u>							
Total A	rea (A)		7.55							
Total D	ischarge (Q)				5.15					

(Sat)19-Jun-2021-Float measurement

Times	ime Distance No. Trials (Time in Sec.)						Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	1	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
10:30	35	42	<u>45</u>	<u>43</u>	43	44	43.40	0.81	0.635	14.00	7.90	6.37
11:00	35	42	44	<u>43</u>	42	<u>43</u>	42.80	0.82	0.650	14.00	8.27	6.76
<u>11:30</u>	<u>35</u>	<u>43</u>	<u>45</u>	<u>43</u>	<u>43</u>	<u>41.00</u>	43.00	<u>0.81</u>	<u>0.620</u>	14.00	<u>7.53</u>	<u>6.13</u>

(Sat)19-Jun-2021

	<u>Determi</u>	ning the Wa	ter Discharge	e (Q) from cu	Irrent meter	readings				
Location:		Upstream o	of Dam							
Date:		<u>(Sat)19-Jun</u>	i-2021							
Weather:		Isolated Sh	owers		1	1				
River	Flo	w Velocity (r	<u>n/s)</u>	Depth	Width	Area	Discharge			
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>			
<u>1</u>	<u>0.074</u>	<u>0.108</u>	<u>0.091</u>	<u>0.147</u>	<u>1</u>	<u>0.147</u>	<u>0.013</u>			
<u>2</u>	<u>0.085</u>	0.133	<u>0.109</u>	0.421	<u>1</u>	0.421	0.046			
<u>3</u>	<u>0.167</u>	0.326	0.247	0.423	<u>1</u>	0.423	0.104			
<u>4</u>	<u>0.315</u>	0.686	<u>0.501</u>	<u>0.443</u>	<u>1</u>	<u>0.443</u>	0.222			
<u>5</u>	0.602	<u>0.968</u>	<u>0.785</u>	<u>0.525</u>	<u>1</u>	<u>0.525</u>	<u>0.412</u>			
<u>6</u>	0.803	<u>1.185</u>	0.994	0.602	<u>1</u>	0.602	0.598			
<u>7</u>	0.835	<u>1.189</u>	<u>1.012</u>	0.635	<u>1</u>	0.635	0.643			
<u>8</u>	<u>0.705</u>	<u>1.035</u>	<u>0.870</u>	<u>0.468</u>	<u>1</u>	<u>0.468</u>	<u>0.407</u>			
<u>9</u>	<u>0.554</u>	0.728	<u>0.641</u>	<u>0.509</u>	<u>1</u>	0.509	0.326			
<u>10</u>	<u>0.424</u>	<u>0.689</u>	<u>0.557</u>	<u>0.573</u>	<u>1</u>	<u>0.573</u>	<u>0.319</u>			
<u>11</u>	0.437	0.678	0.558	0.257	<u>1</u>	0.257	<u>0.143</u>			
<u>12</u>	<u>0.455</u>	<u>0.676</u>	<u>0.566</u>	0.226	<u>1</u>	0.226	<u>0.128</u>			
<u>13</u>	0.421	0.768	0.595	0.501	<u>1</u>	0.501	0.298			
<u>14</u>	0.357	0.536	0.447	0.547	<u>1</u>	0.547	0.244			
<u>15</u>	0.028	0.091	0.060	0.135	1	0.135	0.008			
		Total			<u>15</u>	<u>5.73</u>	<u>3.66</u>			
Water L	evel Depth	(<u>m)</u>	<u>0.64</u>							
Total A	rea (A)		5.73							
Total Di	ischarge (Q)		3.66							

1

(Sun)04-Jul-2021-Float measurement

Time	Distance	No. Trials (Time in Sec.)					Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	1	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
9:00	<u>40</u>	35	34	35	37	33	34.80	1.15	0.750	13.00	10.74	12.35
10:00	<u>40</u>	34	32	33	34	35	33.60	<u>1.19</u>	0.765	13.00	<u>11.11</u>	13.23
<u>11:00</u>	<u>40</u>	<u>33</u>	<u>33</u>	<u>31</u>	<u>31</u>	<u>35</u>	32.60	<u>1.23</u>	<u>0.770</u>	<u>13.00</u>	<u>11.24</u>	<u>13.79</u>
12:00	<u>40</u>	<u>34</u>	<u>34</u>	<u>34</u>	32	<u>36</u>	<u>34.00</u>	<u>1.18</u>	<u>0.760</u>	<u>13.00</u>	10.99	12.93
13:00	40	36	33	32	36	33	34.00	1.18	0.755	13.00	10.87	12.78

٦

(Sat)16-Oct-2021

	Determi	ning the Wat	ter Discharge	e (Q) from c	urrent meter	<u>readings</u>			
Location:		Upstream	of Dam						
Date:		(Sat)16-Oc	t-2021		Stat Time :	10:46 AM			
Weather:		Rain & Flo	odina		Stop Time	: 12:00 PM			
River	Flo	w Velocity (r	n/s)	Depth	Width	Area	Discharge		
Width (m)	V1	v2	Mean	(m)	(m)	(m^2)	(m^3/s)		
1	0 540	0.818	0.679	0.157	1	0.157	0 107		
2	0.538	1.007	0.773	0.339	1	0.339	0.262		
3	0.782	1.087	0.935	0.467	1	0.467	0.436		
4	1.065	1.201	1.133	0.475	1	0.475	0.538		
5	0.841	1.239	1.040	0.561	1	0.561	0.583		
6	0.936	1.035	0.986	0.756	1	0.756	0.745		
7	0.987	1.194	1.091	0.844	1	0.844	0.920		
8	0.928	1.453	1.191	0.820	1	0.820	0.976		
9	0.944	1.181	1.063	0.789	1	0.789	0.838		
10	0.533	1.198	0.866	0.851	1	0.851	0.737		
<u>11</u>	0.740	<u>1.150</u>	0.945	0.837	<u>1</u>	0.837	<u>0.791</u>		
<u>12</u>	0.734	<u>1.216</u>	0.975	0.745	<u>1</u>	0.745	0.726		
<u>13</u>	0.637	<u>1.016</u>	0.827	0.664	<u>1</u>	<u>0.664</u>	<u>0.549</u>		
<u>14</u>	0.786	<u>1.196</u>	<u>0.991</u>	0.649	<u>1</u>	<u>0.649</u>	0.643		
<u>15</u>	<u>0.717</u>	<u>0.925</u>	<u>0.821</u>	<u>0.613</u>	<u>1</u>	<u>0.613</u>	<u>0.503</u>		
<u>16</u>	0.490	<u>1.105</u>	<u>0.798</u>	<u>0.551</u>	<u>1</u>	<u>0.551</u>	<u>0.439</u>		
<u>17</u>	0.748	<u>1.207</u>	<u>0.978</u>	0.596	<u>1</u>	0.596	0.583		
<u>18</u>	0.739	<u>1.146</u>	<u>0.943</u>	0.494	<u>1</u>	0.494	<u>0.466</u>		
<u>19</u>	0.241	<u>0.893</u>	<u>0.567</u>	0.542	<u>1</u>	<u>0.542</u>	<u>0.307</u>		
<u>20</u>	0.542	<u>1.008</u>	<u>0.775</u>	0.526	<u>1</u>	<u>0.526</u>	<u>0.408</u>		
<u>21</u>	0.420	<u>0.891</u>	<u>0.656</u>	<u>0.539</u>	<u>1</u>	<u>0.539</u>	<u>0.353</u>		
<u>22</u>	0.489	<u>0.576</u>	<u>0.533</u>	<u>0.549</u>	<u>1</u>	<u>0.549</u>	<u>0.292</u>		
<u>23</u>	0.279	<u>0.817</u>	<u>0.548</u>	<u>0.456</u>	<u><u>1</u></u>	0.456	<u>0.250</u>		
<u>24</u>	0.548	0.664	0.606	<u>0.503</u>	<u><u>1</u></u>	<u>0.503</u>	<u>0.305</u>		
<u>25</u>	<u>0.511</u>	<u>0.686</u>	<u>0.599</u>	0.527	<u><u>1</u></u>	<u>0.527</u>	<u>0.315</u>		
<u>26</u>	0.374	<u>0.455</u>	<u>0.415</u>	<u>0.503</u>	<u><u>1</u></u>	<u>0.503</u>	<u>0.208</u>		
27	<u>0.211</u>	0.322	0.267	<u>0.489</u>	<u>1</u>	<u>0.489</u>	<u>0.130</u>		
		Total			27	<u>15.84</u>	<u>13.41</u>		
Water Level Depth (m)			0.85						
Total A	rea (A)				<u>15.84</u>				
Total Di	ischarge (Q)	<u> </u>	13.41						

(Sat)23-Oct-2021

	Determi	ning the Wa	ter Discharge	e (Q) from cu	Irrent meter	readings	
Location:		Upstream o	of Dam				
Date:		(Sat)23-Oct	-2021		Stat Time :	08:50 AM	
Weather:		Cloudy (No	flooding)		Stop Time :	10:30 AM	
River	Flo	w Velocity (n	n/s)	Depth	Width	Area	Discharge
Width (m)	V1-0.2D	V2-0.8D	Mean	(m)	(m)	(m ²)	(m ³ /s)
1	0.236	0.473	0.355	0.202	0.5	0.101	0.036
2	0.157	0.314	0.236	0.236	0.5	0.118	0.028
3	0.289	0.577	0.433	0.225	0.5	0.112	0.049
4	0.295	0.589	0.442	0.298	0.5	0.149	0.066
5	0.316	0.632	0.474	0.367	0.5	0.184	0.087
6	0.334	0.667	0.501	0.361	0.5	0.180	0.090
7	0.374	0.749	0.562	0.406	0.5	0.203	0.114
8	0.347	0.694	0.521	0.418	0.5	0.209	0.109
9	0.398	0.797	0.598	0.447	0.5	0.224	0.134
10	0.389	0.779	0.584	0.511	0.5	0.256	0.149
11	0.388	0.776	0.582	0.531	0.5	0.266	0.155
<u>12</u>	0.353	0.706	0.530	0.581	0.5	0.290	0.154
<u>13</u>	0.431	0.862	0.647	0.604	0.5	0.302	0.195
14	0.433	0.866	0.650	0.606	0.5	0.303	0.197
<u>15</u>	0.428	0.857	0.643	0.672	0.5	0.336	0.216
<u>16</u>	0.426	0.852	0.639	0.661	0.5	0.330	0.211
<u>17</u>	0.445	0.890	0.668	0.656	0.5	0.328	0.219
<u>18</u>	0.463	0.925	0.694	0.625	0.5	0.312	0.217
<u>19</u>	0.468	0.936	0.702	0.634	0.5	0.317	0.223
20	0.448	0.895	0.672	0.595	0.5	0.298	0.200
<u>21</u>	0.496	0.992	0.744	0.556	0.5	<u>0.278</u>	0.207
22	0.433	0.865	0.649	<u>0.518</u>	0.5	0.259	<u>0.168</u>
<u>23</u>	0.475	<u>0.950</u>	<u>0.713</u>	0.542	0.5	<u>0.271</u>	<u>0.193</u>
24	0.481	0.961	0.721	0.510	0.5	0.255	0.184
25	0.506	1.013	0.760	0.405	0.5	0.202	0.154
<u>26</u>	0.481	0.962	0.722	0.460	0.5	0.230	0.166
27	0.524	1.048	0.786	0.502	0.5	0.251	0.197
<u>28</u>	0.487	0.974	0.731	0.376	0.5	<u>0.188</u>	0.137
<u>29</u>	0.461	0.922	0.692	0.432	0.5	0.216	0.149
<u>30</u>	0.436	0.872	0.654	0.348	0.5	0.174	0.114
<u>31</u>	0.446	0.893	0.670	0.338	0.5	0.169	0.113
<u>32</u>	0.457	<u>0.913</u>	0.685	0.280	0.5	0.140	0.096
<u>33</u>	0.400	0.800	0.600	0.308	0.5	<u>0.154</u>	0.092

<u>34</u>	<u>0.419</u>	0.839	0.629	0.276	0.5	0.138	0.087			
<u>35</u>	<u>0.424</u>	0.848	0.636	0.296	0.5	0.148	0.094			
<u>36</u>	0.357	0.714	0.536	0.326	0.5	0.163	0.087			
37	0.362	0.724	0.543	0.200	0.5	0.100	0.054			
<u>38</u>	<u>0.358</u>	0.716	0.537	0.284	0.5	0.142	0.076			
<u>39</u>	<u>0.334</u>	0.668	0.501	0.300	0.5	0.150	<u>0.075</u>			
<u>40</u>	0.333	0.666	0.500	0.322	<u>0.5</u>	<u>0.161</u>	<u>0.080</u>			
<u>41</u>	<u>0.318</u>	0.636	0.477	0.344	<u>0.5</u>	<u>0.172</u>	<u>0.082</u>			
<u>42</u>	0.329	0.658	0.494	0.306	<u>0.5</u>	<u>0.153</u>	<u>0.075</u>			
<u>43</u>	0.313	0.626	0.470	0.286	<u>0.5</u>	0.143	<u>0.067</u>			
44	0.322	0.644	0.483	0.312	<u>0.5</u>	<u>0.156</u>	<u>0.075</u>			
<u>45</u>	0.320	0.640	0.480	0.320	0.5	0.160	0.077			
<u>46</u>	<u>0.317</u>	0.634	0.476	0.284	<u>0.5</u>	0.142	<u>0.067</u>			
<u>47</u>	0.290	0.581	0.436	0.248	<u>0.5</u>	<u>0.124</u>	<u>0.054</u>			
<u>48</u>	<u>0.287</u>	0.575	0.431	<u>0.190</u>	<u>0.5</u>	0.095	<u>0.041</u>			
<u>49</u>	0.259	0.517	0.388	0.162	<u>0.5</u>	0.081	<u>0.031</u>			
		<u>Total</u>			<u>24.5</u>	<u>9.83</u>	<u>5.94</u>			
Water I	Level Depth (<u>m)</u>	0.67							
Total A	rea (A)		<u>9.83</u>							
Total D	ischarge (Q)		5.94							

(Fri)05-Nov-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec. <u>)</u>		Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	1	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
9:00	<u>50</u>	52.28	51.66	53.87	53.63	53.44	52.98	0.94	0.86	27.00	13.80	13.02
<u>9:30</u>	<u>50</u>	52.41	53.61	52.18	52.47	51.62	<u>52.46</u>	<u>0.95</u>	0.85	27.00	<u>13.49</u>	<u>12.86</u>
<u>11:00</u>	50	53.02	52.53	52.44	53.51	52.65	52.83	0.95	0.85	27.00	13.49	12.77
<u>11:30</u>	50	53.24	53.13	52.53	51.72	52.31	52.59	0.95	0.85	27.00	13.49	12.83
13:00	<u>50</u>	53.91	51.18	51.59	53.03	52.51	52.44	0.95	0.84	27.00	13.19	<u>12.58</u>
<u>13:30</u>	<u>50</u>	52.28	<u>52.18</u>	53.56	<u>51.31</u>	53.31	<u>52.53</u>	<u>0.95</u>	0.84	<u>27.00</u>	<u>13.19</u>	12.56
15:00	50	53.93	53.63	52.96	53.66	52.35	53.31	0.94	0.84	27.00	13.19	12.37
15:30	50	53.37	54.22	53.43	53.82	52.47	53.46	0.94	0.84	27.00	13.19	12.34
16:00	50	53.59	54.12	54.31	52.26	54.47	53.75	0.93	0.83	27.00	12.89	11.99
16:30	<u>50</u>	54.65	53.53	53.91	52.26	54.27	<u>53.72</u>	<u>0.93</u>	<u>0.83</u>	<u>27.00</u>	<u>12.89</u>	<u>11.99</u>

(Sat)06-Nov-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec. <u>)</u>		Mean	Velocity	Depth	Width	Area	Discharge
Inne	<u>(m)</u>	1	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
9:00	<u>50</u>	58.41	57.41	60.78	60.12	50.10	57.36	0.87	0.86	27.00	13.49	<u>11.76</u>
<u>9:30</u>	<u>50</u>	<u>59.97</u>	60.34	60.05	54.63	<u>49.75</u>	<u>56.95</u>	<u>0.88</u>	<u>0.85</u>	27.00	<u>13.49</u>	<u>11.85</u>
<u>11:00</u>	<u>50</u>	49.87	52.57	60.51	54.67	53.28	<u>54.18</u>	<u>0.92</u>	0.86	27.00	<u>13.80</u>	<u>12.73</u>
<u>11:30</u>	50	52.79	53.32	50.83	52.37	55.62	52.99	0.94	0.87	27.00	<u>14.10</u>	13.30
13:00	50	60.03	50.69	52.96	52.56	55.09	54.27	0.92	0.86	27.00	13.80	12.71
13:00	<u>50</u>	49.72	54.31	54.65	53.63	52.50	52.96	0.94	0.89	27.00	14.70	13.88

<u>15:00</u>	<u>50</u>	10.01	<u>9.50</u>	8.63	8.69	<u>9.44</u>	<u>9.25</u>	<u>5.40</u>	<u>1.89</u>	36.00	<u>51.66</u>	<u>279.13</u>
15:10	<u>50</u>	7.07	7.09	8.46	7.18	10.63	8.09	6.18	<u>1.90</u>	37.00	52.10	322.16
15:20	<u>50</u>	<u>8.16</u>	8.46	9.57	8.87	6.47	8.31	6.02	<u>1.92</u>	38.00	52.98	318.91
<u>15:30</u>	<u>50</u>	8.04	<u>7.12</u>	<u>8.03</u>	<u>8.58</u>	<u>9.22</u>	8.20	<u>6.10</u>	<u>1.94</u>	<u>38.00</u>	53.86	328.47
<u>15:40</u>	<u>50</u>	<u>8.69</u>	<u>9.47</u>	<u>8.29</u>	9.07	<u>8.30</u>	8.76	5.71	<u>1.92</u>	<u>38.00</u>	<u>52.98</u>	302.25
15:50	<u>50</u>	9.60	10.55	7.75	9.50	8.55	<u>9.19</u>	5.44	1.92	38.00	52.98	288.24
16:00	<u>50</u>	10.19	12.15	11.88	13.12	13.19	<u>12.11</u>	<u>4.13</u>	<u>1.90</u>	37.00	52.10	215.18

(Sun)07-Nov-2021-Float measurement

Time	Distance	No. Trials (Time in Sec.)					Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	<u>1</u>	2	3	4	5	Time (s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
9:00	<u>50</u>	40.75	35.78	38.03	38.07	33.87	37.30	<u>1.34</u>	0.89	29.00	<u>14.70</u>	<u>19.71</u>
9:30	50	39.31	35.44	44.38	38.03	35.47	38.53	<u>1.30</u>	0.87	29.00	<u>14.10</u>	18.30
<u>11:00</u>	<u>50</u>	40.81	35.91	39.70	45.53	34.25	39.24	<u>1.27</u>	0.87	29.00	<u>14.10</u>	17.96
<u>11:30</u>	<u>50</u>	40.00	35.94	38.53	39.31	39.47	<u>38.65</u>	<u>1.29</u>	<u>0.88</u>	29.00	<u>14.40</u>	<u>18.63</u>
13:00	<u>50</u>	37.41	39.35	36.62	38.05	35.50	37.39	<u>1.34</u>	0.89	29.00	<u>14.70</u>	<u>19.66</u>
13:30	50	34.18	34.56	38.72	37.72	37.97	36.63	1.37	0.90	29.00	15.01	20.48

Site 2. Downstream of Dam

(Tue)30-Jun-2020

	Determir	ning the V	Vater Discha	arge (Q) froi	m current m	eter reading	S			
Location:		Downstre	am of Dam							
Date:		(Tue)30-J	un-2020							
Weather:		Fine Weat	ther							
River	Flow	v Velocity	(m/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.116	0.167	0.142	0.253	1	0.253	0.036			
2	0.364	0.386	0.375	0.318	1	0.318	0.119			
3	0.341	0.671	0.506	0.455	1	0.455	0.230			
4	0.594	0.913	0.754	0.405	1	0.405	0.305			
5	0.629	0.921	0.775	0.500	1	0.500	0.388			
6	1.001	1.031	1.016	0.397	1	0.397	0.403			
7	1.084	1.084	1.084	0.360	1	0.360	0.390			
8	0.694	0.838	0.766	0.315	1	0.315	0.241			
9	0.741	0.928	0.835	0.560	1	0.560	0.467			
10	0.556	0.709	0.633	0.315	1	0.315	0.199			
11	0.338	0.413	0.376	0.337	1	0.337	0.127			
12	0.314	0.342	0.328	0.364	1	0.364	0.119			
13	0.523	0.599	0.561	0.300	1	0.300	0.168			
14	0.708	0.726	0.717	0.395	1	0.395	0.283			
15	0.509	0.581	0.545	0.427	1	0.427	0.233			
16	0.573	0.711	0.642	0.511	1	0.511	0.328			
17	0.506	0.533	0.520	0.556	1	0.556	0.289			
18	0.576	0.632	0.604	0.440	1	0.440	0.266			
19	0.169	0.334	0.252	0.367	1	0.367	0.092			
20	0.267	0.109	0.188	0.326	1	0.326	0.061			
21	0.485	0.392	0.439	0.269	1	0.269	0.118			
22	0.362	0.632	0.497	0.393	1	0.393	0.195			
23	0.192	0.179	0.186	0.089	1	0.089	0.017			
		Total			23	8.652	5.076			
Water Level D	Depth (m)		0.550							
Total Area (A))		8.652							
Total Dischard	ge (Q)		5.076							

(Fri)03-Jul-2	2020
---------------	------

Γ

	Determi	ning the Wa	ter Discharg	e (Q) from cu	urrent meter	readings					
Location:		Downstrea	m of Dam								
Date:		(Fri)03-Jul	-2020								
Weather:		Isolated Sh	owers & Thunder storms (after over night flood)								
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge				
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)				
1	0.193	0.226	0.210	0.078	1	0.078	0.016				
2	0.298	0.306	0.302	0.234	1	0.234	0.071				
3	0.58	0.723	0.652	0.524	1	0.524	0.341				
4	0.203	0.291	0.247	0.400	1	0.4	0.099				
5	0.293	0.392	0.343	0.291	1	0.291	0.100				
6	0.443	0.773	0.608	0.475	1	0.475	0.289				
7	0.628	0.943	0.786	0.596	1	0.596	0.468				
8	0.702	0.960	0.831	0.536	1	0.536	0.445				
9	0.84	1.133	0.987	0.646	1	0.646	0.637				
10	0.825	1.321	1.073	0.417	1	0.417	0.447				
11	0.756	1.218	0.987	0.452	1	0.452	0.446				
12	0.68	0.827	0.754	0.480	1	0.48	0.362				
13	0.642	0.795	0.719	0.432	1	0.432	0.310				
14	0.808	1.135	0.972	0.440	1	0.44	0.427				
15	0.816	1.246	1.031	0.403	1	0.403	0.415				
16	1.036	1.293	1.165	0.492	1	0.492	0.573				
17	0.887	1.250	1.069	0.454	1	0.454	0.485				
18	0.889	1.266	1.078	0.419	1	0.419	0.451				
19	0.821	1.125	0.973	0.421	1	0.421	0.410				
20	0.673	1.082	0.878	0.487	1	0.487	0.427				
21	0.589	0.873	0.731	0.381	1	0.381	0.279				
22	0.478	0.840	0.659	0.304	1	0.304	0.200				
23	0.374	0.419	0.397	0.263	1	0.263	0.104				
24	0.203	0.288	0.246	0.242	1	0.242	0.059				
25	0.212	0.275	0.244	0.127	1	0.127	0.031				
26	0.252	0.261	0.257	0.132	1	0.132	0.034				
		Total			26	10.106	7.929				
Water Level	Depth (m)				0.626						
Total Area (A	A)		10.106								
Total Discha	rge (Q)		7.909								
(Tue)07-Jul-2020

	Determining the Water Discharge (Q) from current meter readings										
Location:		Downstrea	m of Dam								
Date:		(Tue)07-Jul	-2020								
Weather:		Fine									
River	Flo	w Velocity (r	n/s)	Depth	Width	Area	Discharge				
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)				
1	0.257	0.270	0.264	0.429	1	0.429	0.113				
2	0.253	0.183	0.218	0.101	1	0.101	0.022				
3	0.223	0.347	0.285	0.307	1	0.307	0.087				
4	0.313	0.355	0.334	0.437	1	0.437	0.146				
5	0.363	0.729	0.546	0.399	1	0.399	0.218				
6	0.685	0.953	0.819	0.401	1	0.401	0.328				
7	0.826	1.118	0.972	0.395	1	0.395	0.384				
8	0.995	1.123	1.059	0.393	1	0.393	0.416				
9	0.716	1.055	0.886	0.430	1	0.43	0.381				
10	0.719	0.871	0.795	0.311	1	0.311	0.247				
11	0.831	1.013	0.922	0.567	1	0.567	0.523				
12	0.527	0.749	0.638	0.337	1	0.337	0.215				
13	0.419	0.606	0.513	0.333	1	0.333	0.171				
14	0.366	0.469	0.418	0.383	1	0.383	0.160				
15	0.43	0.668	0.549	0.404	1	0.404	0.222				
16	0.672	0.283	0.478	0.408	1	0.408	0.195				
17	0.464	0.707	0.586	0.520	1	0.52	0.304				
18	0.575	0.781	0.678	0.507	1	0.507	0.344				
19	0.547	0.771	0.659	0.473	1	0.473	0.312				
20	0.456	0.663	0.560	0.434	1	0.434	0.243				
21	0.364	0.492	0.428	0.219	1	0.219	0.094				
22	0.248	0.321	0.285	0.214	1	0.214	0.061				
23	0.347	0.482	0.415	0.361	1	0.361	0.150				
		Total			23	8.763	5.335				
Water Level	Depth (m)				0.550						
Total Area (A)		8.763								
Total Discha	arge (Q)				5.335						

(Tue)14-Jul-2020-TSS	measurement
----------------------	-------------

	Determi	ning the Wa	ter Discharg	e (Q) from cu	urrent meter	readings			
Location:		Downstrea	m of Dam						
Date:		(Tue)14-Ju	-2020						
Weather:		Fine (Dry v	veather)						
River	Flo	w Velocity (r	n/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.022	0.118	0.070	0.109	1	0.109	0.008		
2	0.208	0.469	0.339	0.210	1	0.21	0.071		
3	0.425	0.698	0.562	0.402	1	0.402	0.226		
4	0.587	0.960	0.774	0.372	1	0.372	0.288		
5	0.680	0.958	0.819	0.348	1	0.348	0.285		
6	0.544	0.880	0.712	0.365	1	0.365	0.260		
7	0.554	0.887	0.721	0.371	1	0.371	0.267		
8	0.454	0.724	0.589	0.316	1	0.316	0.186		
9	0.578	0.902	0.740	0.340	1	0.34	0.252		
10	0.453	0.731	0.592	0.241	1	0.241	0.143		
11	0.355	0.498	0.427	0.334	1	0.334	0.142		
12	0.241	0.278	0.260	0.336	1	0.336	0.087		
13	0.581	0.732	0.657	0.291	1	0.291	0.191		
14	0.531	0.805	0.668	0.375	1	0.375	0.251		
15	0.602	0.816	0.709	0.440	1	0.44	0.312		
16	0.627	0.779	0.703	0.480	1	0.48	0.337		
17	0.572	0.802	0.687	0.491	1	0.491	0.337		
18	0.547	0.637	0.592	0.376	1	0.376	0.223		
19	0.539	0.602	0.571	0.301	1	0.301	0.172		
20	0.211	0.280	0.246	0.232	1	0.232	0.057		
21	0.276	0.348	0.312	0.238	1	0.238	0.074		
22	0.474	0.764	0.619	0.376	1	0.376	0.233		
23	0.267	0.367	0.317	0.116	1	0.116	0.037		
		Total			23	7.460	4.438		
Water Leve	Depth (m)			0.491					
Total Area ((A)		7.460						
Total Discha	arge (Q)				4.438				

(Tue)04-Aug-2020

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings				
Location:		Downstrea	m of Dam							
Date:		(Tue)04-Au	g-2020							
Weather:		Fine (Dry w	/eather)							
River	Flo	w Velocity (n	n/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.110	0.259	0.185	0.325	1	0.325	0.060			
2	0.156	0.619	0.388	0.327	1	0.327	0.127			
3	0.408	1.008	0.708	0.415	1	0.415	0.294			
4	0.734	1.165	0.950	0.368	1	0.368	0.349			
5	0.523	0.800	0.662	0.327	1	0.327	0.216			
6	0.482	0.823	0.653	0.362	1	0.362	0.236			
7	0.492	0.768	0.630	0.280	1	0.28	0.176			
8	0.768	0.863	0.816	0.341	1	0.341	0.278			
9	0.751	0.917	0.834	0.219	1	0.219	0.183			
10	0.648	0.712	0.680	0.256	1	0.256	0.174			
11	0.46	0.758	0.609	0.315	1	0.315	0.192			
12	0.419	0.599	0.509	0.370	1	0.37	0.188			
13	0.251	0.589	0.420	0.378	1	0.378	0.159			
14	0.496	0.644	0.570	0.388	1	0.388	0.221			
15	0.546	0.723	0.635	0.255	1	0.255	0.162			
16	0.469	0.691	0.580	0.150	1	0.15	0.087			
17	0.341	0.443	0.392	0.176	1	0.176	0.069			
18	0.28	0.333	0.307	0.165	1	0.165	0.051			
19	0.215	0.315	0.265	0.146	1	0.146	0.039			
20	0.198	0.258	0.228	0.131	1	0.131	0.030			
		Total			20	5.694	3.291			
Water Leve	l Depth (m)		0.380							
Total Area ((A)		5.694							
Total Discha	arge (Q)				3.291					

(Tue)25-Aug-2020

	Determir	ning the Wat	er Discharge	e (Q) from c	urrent meter	readings				
Location:		Downstrea	m of Dam							
Date:		(Tue)25-Au	J-2020							
Weather:		Isolated sh	ower (No Fl	ooding)						
River	Flow	w Velocity (n	n/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.040	0.311	0.176	0.329	1	0.329	0.058			
2	0.191	0.580	0.386	0.225	1	0.225	0.087			
3	0.482	0.882	0.682	0.374	1	0.374	0.255			
4	0.499	0.806	0.653	0.361	1	0.361	0.236			
5	0.382	0.873	0.628	0.345	1	0.345	0.216			
6	0.246	0.769	0.508	0.350	1	0.35	0.178			
7	0.580	0.825	0.703	0.263	1	0.263	0.185			
8	0.574	0.831	0.703	0.283	1	0.283	0.199			
9	0.51	0.858	0.684	0.276	1	0.276	0.189			
10	0.487	0.854	0.671	0.286	1	0.286	0.192			
11	0.499	0.887	0.693	0.278	1	0.278	0.193			
12	0.554	0.827	0.691	0.431	1	0.431	0.298			
13	0.572	0.878	0.725	0.438	1	0.438	0.318			
14	0.55	0.814	0.682	0.330	1	0.33	0.225			
15	0.391	0.594	0.493	0.322	1	0.322	0.159			
16	0.374	0.583	0.479	0.278	1	0.278	0.133			
17	0.304	0.368	0.336	0.160	1	0.16	0.054			
18	0.175	0.231	0.203	0.154	1	0.154	0.031			
		Total			18	5.483	3.203			
Water Leve	l Depth (m)				0.380					
Total Area ((A)		5.483							
Total Discha	arge (Q)				3.203					

(Tue)01-Sep-2020

	Determining the Water Discharge (Q) from current meter readings										
Location:		Downstrea	m of Dam								
Date:		(Tue)01-DS	eop-2020								
Weather:		Isolated sh	ower (No Fl	ooding)	•						
River	Flov	w Velocity (m/s)		Depth	Width	Area	Discharge				
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)				
1	0.138	0.217	0.178	0.221	1	0.221	0.039				
2	0.405	0.625	0.515	0.259	1	0.259	0.133				
3	0.414	0.778	0.596	0.338	1	0.338	0.201				
4	0.425	0.816	0.621	0.391	1	0.391	0.243				
5	0.534	0.962	0.748	0.409	1	0.409	0.306				
6	0.524	0.961	0.743	0.477	1	0.477	0.354				
7	0.494	0.943	0.719	0.492	1	0.492	0.354				
8	0.581	1.066	0.824	0.487	1	0.487	0.401				
9	0.409	0.749	0.579	0.394	1	0.394	0.228				
10	0.493	0.988	0.741	0.361	1	0.361	0.267				
11	0.493	0.903	0.698	0.382	1	0.382	0.267				
12	0.429	0.853	0.641	0.284	1	0.284	0.182				
13	0.337	0.734	0.536	0.272	1	0.272	0.146				
14	0.372	0.684	0.528	0.266	1	0.266	0.140				
15	0.334	0.582	0.458	0.153	1	0.153	0.070				
16	0.193	0.423	0.308	0.115	1	0.115	0.035				
17	0.167	0.353	0.260	0.121	1	0.121	0.031				
18	0.165	0.307	0.236	0.101	1	0.101	0.024				
		Total			18	5.523	3.42				
Water Leve	l Depth (m)				0.380						
Total Area ((A)		5.523								
Total Discha	arge (Q)				3.422						

(Wed)07-Oct-2020

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings			
Location:		Downstrea	m of Dam						
Date:		(Wed)07-O	ct-2020						
Weather:		Isolated sh	ower (River	Condition: A	fter flooding	I)			
River	Flo	w Velocity (r	n/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.095	0.108	0.102	0.13	1	0.13	0.013		
2	0.226	0.400	0.313	0.365	1	0.365	0.114		
3	0.243	0.718	0.481	0.2	1	0.2	0.096		
4	0.531	0.835	0.683	0.393	1	0.393	0.268		
5	0.839	1.480	1.160	0.382	1	0.382	0.443		
6	0.824	1.450	1.137	0.362	1	0.362	0.412		
7	0.930	1.519	1.225	0.331	1	0.331	0.405		
8	0.755	1.330	1.043	0.421	1	0.421	0.439		
9	0.809	0.963	0.886	0.452	1	0.452	0.400		
10	0.803	1.132	0.968	0.601	1	0.601	0.581		
11	0.785	1.199	0.992	0.432	1	0.432	0.429		
12	0.708	1.233	0.971	0.381	1	0.381	0.370		
13	0.972	1.305	1.139	0.364	1	0.364	0.414		
14	1.116	1.595	1.356	0.335	1	0.335	0.454		
15	0.792	1.121	0.957	0.37	1	0.37	0.354		
16	0.688	1.128	0.908	0.359	1	0.359	0.326		
17	0.597	1.044	0.821	0.342	1	0.342	0.281		
18	0.474	0.639	0.557	0.229	1	0.229	0.127		
19	0.309	0.465	0.387	0.333	1	0.333	0.129		
20	0.28	0.329	0.305	0.241	1	0.241	0.073		
21	0.385	0.448	0.417	0.224	1	0.224	0.093		
22	0.135	0.195	0.165	0.125	1	0.125	0.021		
		Total			22	7.37	6.24		
Water Level	Depth (m)		0.600						
Total Area (A)		7.372						
Total Discha	arge (Q)				6.244				

(Tue)13-Oct-2020

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings			
Location:		Downstrea	m of Dam						
Date:		(Tue)07-Oc	t-2020						
Weather:		Isolated sh	ower (River	Condition: A	fter flooding	<u>ı)</u>			
River	Flow	w Velocity (r	n/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.340	0.277	0.309	0.055	1	0.055	0.017		
2	0.462	0.539	0.501	0.117	1	0.117	0.059		
3	0.661	1.308	0.985	0.264	1	0.264	0.260		
4	0.823	1.544	1.184	0.354	1	0.354	0.419		
5	0.812	1.506	1.159	0.381	1	0.381	0.442		
6	0.8	1.479	1.140	0.378	1	0.378	0.431		
7	0.912	1.648	1.280	0.454	1	0.454	0.581		
8	0.607	0.935	0.771	0.395	1	0.395	0.305		
9	0.612	0.907	0.760	0.385	1	0.385	0.292		
10	0.722	1.152	0.937	0.371	1	0.371	0.348		
11	0.686	1.087	0.887	0.311	1	0.311	0.276		
12	0.733	1.124	0.929	0.341	1	0.341	0.317		
13	0.774	1.208	0.991	0.437	1	0.437	0.433		
14	0.689	1.127	0.908	0.504	1	0.504	0.458		
15	0.926	1.311	1.119	0.353	1	0.353	0.395		
16	0.687	1.092	0.890	0.332	1	0.332	0.295		
17	0.526	0.944	0.735	0.34	1	0.34	0.250		
18	0.787	0.787	0.787	0.281	1	0.281	0.221		
19	0.721	0.5	0.611	0.21	1	0.21	0.128		
20	0.192	0.471	0.332	0.249	1	0.249	0.083		
21	0.112	0.459	0.286	0.188	1	0.188	0.054		
22	0.148	0.270	0.209	0.104	1	0.104	0.022		
		Total			22	6.80	6.08		
Water Level	Depth (m)		0.500						
Total Area ((A)				6.804				
Total Discha	arge (Q)		6.083						

(Tue)20-Oct-2020

	Determir	ning the Wat	ter Discharge	e (Q) from cu	ırrent meter	readings	
Location:		Downstrea	m of Dam				
Date:		(Tue)20-Oc	t-2020				
Weather:		Isolated sh	ower				
River	Flo	w Velocity (r	n/s)	Depth	Width	Area	Discharge
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.013	0.073	0.043	0.293	1	0.293	0.013
2	0.212	0.034	0.123	0.378	1	0.378	0.046
3	0.995	1.402	1.199	0.273	1	0.273	0.327
4	0.882	1.531	1.207	0.475	1	0.475	0.573
5	0.835	1.343	1.089	0.488	1	0.488	0.531
6	0.841	1.198	1.020	0.418	1	0.418	0.426
7	0.709	1.333	1.021	0.473	1	0.473	0.483
8	0.781	1.479	1.130	0.486	1	0.486	0.549
9	0.837	1.506	1.172	0.406	1	0.406	0.476
10	0.764	1.132	0.948	0.439	1	0.439	0.416
11	0.782	1.063	0.923	0.44	1	0.44	0.406
12	0.842	1.084	0.963	0.436	1	0.436	0.420
13	0.854	1.114	0.984	0.487	1	0.487	0.479
14	0.92	1.484	1.202	0.653	1	0.653	0.785
15	0.784	1.634	1.209	0.411	1	0.411	0.497
16	0.765	1.058	0.912	0.438	1	0.438	0.399
17	0.516	0.977	0.747	0.364	1	0.364	0.272
18	0.485	0.626	0.556	0.325	1	0.325	0.181
19	0.388	0.599	0.494	0.216	1	0.216	0.107
20	0.475	0.542	0.509	0.235	1	0.235	0.119
21	0.285	0.485	0.385	0.24	1	0.24	0.092
22	0.25	0.312	0.281	0.173	1	0.173	0.049
23	0.051	0.152	0.102	0.136	1	0.136	0.014
		Total			23	8.68	7.66
Water Level	Depth (m)				0.510		
Total Area ((A)				8.683		
Total Discha	arge (Q)				7.660		

(Tue)27-Oct-2020-Float measurement

Г

Distance(m) No. Trials (Time in Sec.)				Mean	Velocity	Depth	Width	Area	Discharge		
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	25.0	25.0	26.0	27.0	26.0	25.8	1.55	1.7	26	18.2	28.21

(Tue)03-Nov-2020-Float measurement

Distance(m)	No. Trials (Time in Sec.)					Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	24.0	26.0	21.0	23.0	22.0	23.2	1.72	1.4	26	13.53	23.27

(Tue)17-Nov-2020-Float/TSS measurement

Distance(m)	I	No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	27.7	31.2	33.7	29.3	29.0	30.2	1.33	1.5	25	15.09	20.06

(Tue)29-Dec-2020-Float measurement

		No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area (m ²) 13.53 26.05 26.05	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	23.7	20.9	25.5	23.7	24.3	23.6	1.69	1.4	26	13.53	22.86
40	30.3	29.0	25.6	24.3	27.4	27.3	1.46	2.0	26	26.05	38.03
40	25.3	24.2	23.7	26.5	24.4	24.8	1.61	2.0	26	26.05	41.93

(Thu)14-Jan-2021-Float measurement

	I	No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area (m ²) 21.31 26.05 26.05	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	26.3	23.2	26.2	24.9	22.9	24.7	1.62	1.9	26	21.31	34.52
40	22.7	25.7	22.9	27.0	25.4	24.7	1.62	2.0	26	26.05	42.20
40	27.4	24.9	28.6	26.2	25.1	26.4	1.51	2.0	26	26.05	39.33

(Tue)02-Feb-2021-Float measurement

Distance (m)	I	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	22.1	20.1	22.2	21.9	21.5	21.5	1.86	1.7	26	18.2	33.85

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
12:40	40	27.47	27.15	25.28	25.81	26.72	26.49	1.51	2.24	26.00	31.40	47.41
13:40	40	28.10	25.44	29.11	28.55	26.69	27.58	1.45	2.24	26.00	31.40	45.53
14:40	40	24.37	25.91	24.68	25.56	25.03	25.11	1.59	2.32	26.00	33.18	52.76
15:40	40	23.60	22.06	24.25	25.75	23.69	23.87	1.68	2.32	26.00	33.18	55.74
16:40	40	22.63	24.81	25.09	22.30	23.94	23.75	1.68	2.32	26.00	33.18	55.74
17:40	40	23.22	21.75	23.87	24.15	25.01	23.60	1.69	2.32	26.00	33.18	56.08
18:40	40	22.03	23.84	22.97	22.81	24.75	23.28	1.72	2.32	26.00	33.18	57.07

(Wed)10-Feb-2021-Float measurement

(Thu)11-Feb-2021-Float/TSS measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
7:30	40	24.94	23.47	22.76	24.75	24.59	24.10	1.66	2.32	26.00	33.18	55.08
8:30	40	31.06	28.62	30.41	28.75	27.37	29.24	1.37	2.25	26.00	31.62	43.32
9:30	40	25.09	24.75	23.22	22.75	23.57	23.88	1.68	2.25	26.00	31.62	53.12
10:30	40	21.44	23.25	23.91	26.69	24.38	23.93	1.67	2.25	26.00	31.62	52.81
11:30	40	24.03	27.91	28.94	27.47	24.12	26.49	1.51	2.25	26.00	31.62	47.75
12:30	40	24.15	24.44	23.06	22.65	25.94	24.05	1.66	2.26	26.00	31.84	52.86
13:30	40	25.81	21.13	22.31	23.31	24.28	23.37	1.71	2.25	26.00	31.62	54.07
14:30	40	21.32	20.31	24.00	21.37	23.97	22.19	1.80	2.30	26.00	32.74	58.92
15:30	40	21.97	23.41	24.03	26.13	23.00	23.71	1.69	2.30	26.00	32.74	55.32
16:30	40	22.85	24.57	20.31	20.25	21.87	21.97	1.82	2.37	26.00	34.30	62.42
17:30	40	18.00	19.79	21.22	20.34	19.79	19.83	2.02	2.47	26.50	36.53	73.78
18:30	40	18.72	17.40	18.72	18.44	19.57	18.57	2.15	2.49	26.50	36.97	79.49

(Fri)12-Feb-2021-Float/TSS measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
7:30	40	25.28	26.97	25.55	25.63	24.71	25.63	1.56	2.25	26.00	31.62	49.35
8:30	40	25.09	24.41	25.62	26.13	26.84	25.62	1.56	2.25	26.00	31.62	49.37
9:30	40	20.50	21.13	20.31	23.66	20.09	21.14	1.89	2.29	26.00	32.51	61.52
10:30	40	21.85	21.37	22.81	20.59	23.00	21.92	1.82	2.29	26.00	32.51	59.32
11:30	40	22.41	22.22	22.47	21.44	21.22	21.95	1.82	2.28	26.00	32.29	58.84
12:30	40	25.61	21.17	23.03	21.91	21.85	22.71	1.76	2.22	26.00	30.95	54.51
13:30	40	21.44	21.72	21.59	22.69	21.91	21.87	1.83	2.23	26.00	31.17	57.02
14:30	40	26.41	22.21	21.63	21.25	22.56	22.81	1.75	2.25	26.00	31.62	55.45
15:30	40	21.44	22.43	23.25	22.63	21.71	22.29	1.79	2.29	26.00	32.51	58.34
16:30	40	21.86	22.15	23.41	23.06	24.86	23.07	1.73	2.28	26.00	32.29	55.99
17:30	40	21.91	21.97	22.10	23.81	21.68	22.29	1.79	2.23	17.60	31.17	55.80
18:30	40	21.25	21.51	22.60	20.40	21.34	21.42	1.87	2.25	17.70	31.62	59.13

T :	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
16:00	40	15.00	15.00	13.00	13.00	12.00	13.60	2.94	2.54	26.00	38.09	112.02
17:00	40	16.00	16.00	16.00	17.00	18.00	16.60	2.41	2.47	25.00	36.53	88.01
18:00	40	18.00	21.00	20.00	20.00	20.00	19.80	2.02	2.42	24.00	35.41	71.54

(Thu)18-Feb-2021-Float/TSS measurement

(Fri)19-Feb-2021-Float/TSS measurement

Times	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
10:30	50	22.40	22.40	23.20	22.40	22.40	22.56	2.22	2.02	25.50	26.49	58.72
11:30	50	22.40	20.80	21.60	22.40	20.80	21.60	2.31	2.07	25.50	27.61	63.91
13:30	50	20.00	20.00	19.20	20.00	20.00	19.84	2.52	2.12	25.50	28.72	72.38
14:30	50	18.40	19.20	18.40	18.40	18.40	18.56	2.69	2.12	25.50	28.72	77.38

(Thu)25-Feb-2021-Float measurement

Times	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
8:30	40	12.46	12.58	12.20	12.29	12.09	12.32	3.25	2.25	26.00	31.62	102.63
9:30	40	12.70	12.06	11.93	12.28	11.38	12.07	3.31	2.28	26.00	32.29	107.00
10:30	40	12.52	12.03	12.73	11.82	11.59	12.14	3.30	2.29	26.00	32.51	107.15
11:30	40	11.98	12.70	11.32	11.83	11.30	11.83	3.38	2.23	26.00	31.17	105.43
12:30	40	11.81	11.36	11.91	11.85	12.27	11.84	3.38	2.31	26.00	32.96	111.34
13:30	40	11.51	11.66	11.51	11.96	12.34	11.80	3.39	2.34	26.00	33.63	114.02
14:30	40	11.89	12.42	11.70	11.59	11.00	11.72	3.41	2.37	26.00	34.30	117.05
15:30	40	12.02	12.36	12.52	12.97	11.69	12.31	3.25	2.39	26.00	34.74	112.85
16:30	40	12.23	10.35	13.69	12.36	11.88	12.10	3.31	2.42	26.00	35.41	117.04
17:30	40	12.58	13.61	11.57	12.23	11.37	12.27	3.26	2.43	26.00	35.63	116.15

(Fri)26-Feb-2021-Float measurement

Times	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
8:30	50	22.71	23.79	24.69	22.02	23.12	23.27	2.15	2.80	26.00	45.01	96.74
9:30	50	23.07	23.12	23.48	24.13	23.25	23.41	2.14	2.87	26.00	47.11	100.62
10:30	50	23.51	22.73	22.42	23.37	23.96	23.20	2.16	2.87	26.00	47.11	101.54
11:30	50	23.04	21.23	24.54	23.85	23.4	23.21	2.15	2.87	26.00	47.11	101.48
12:30	50	22.13	24.31	24.21	22.05	22.59	23.06	2.17	2.89	26.00	47.72	103.49
13:30	50	25.65	22.25	22.05	21.25	23.55	22.95	2.18	2.95	26.50	49.56	107.98
14:30	50	22.39	22.27	21.79	23.27	22.59	22.46	2.23	2.97	26.50	50.17	111.68
15:30	50	21.29	24.67	21.85	21.77	23.79	22.67	2.21	2.97	26.50	50.17	110.64
16:30	50	20.79	21.29	24.67	21.85	21.77	22.07	2.27	2.99	26.50	50.79	115.03
17:30	50	20.38	20.81	21.15	21.77	23.50	21.52	2.32	3.05	27.00	52.62	122.25

Times	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
8:30	40	12.06	12.44	12.75	12.73	12.37	12.47	3.21	2.45	27.00	36.20	116.12
9:30	40	11.98	12.34	11.91	11.82	11.52	11.91	3.36	2.44	27.00	35.97	120.78
10:30	40	12.40	12.46	12.18	11.86	12.56	12.29	3.25	2.45	27.00	36.20	117.79
11:30	40	12.37	12.40	11.47	12.13	12.64	12.20	3.28	2.45	27.00	36.20	118.68
12:30	40	12.05	12.03	11.86	12.25	12.11	12.06	3.32	2.47	27.00	36.53	121.14
13:30	40	11.39	11.14	11.84	11.16	11.53	11.41	3.50	2.48	27.00	36.87	129.19
14:30	40	12.25	11.30	12.39	11.54	11.89	11.87	3.37	2.49	27.00	37.09	124.97
15:30	40	10.69	10.89	11.11	10.86	11.00	10.91	3.67	2.52	27.00	37.76	138.48
16:30	40	10.53	10.15	11.51	11.98	10.64	10.96	3.65	2.59	27.00	39.33	143.49
17:30	40	9.97	10.77	10.86	10.10	10.63	10.47	3.82	2.60	27.00	39.55	151.15

(Thu)04-Mar-2021-Float measurement

(Fri)05-Mar-2021-Float measurement

Times	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
8:30	40	10.94	9.97	10.74	11.10	9.43	10.44	3.83	2.66	29.00	40.89	156.72
9:30	40	10.43	9.61	10.14	9.81	9.54	9.91	4.04	2.66	29.00	40.89	165.07
10:30	40	9.80	10.20	9.71	10.38	10.12	10.04	3.98	2.69	29.00	41.77	166.36
11:30	40	11.24	10.34	10.15	9.52	10.25	10.30	3.88	2.72	29.00	42.65	165.63
12:30	40	10.60	10.30	10.35	9.88	10.09	10.25	3.90	2.73	29.00	42.95	167.68
13:30	40	10.13	9.98	9.58	9.92	9.54	9.83	4.07	2.74	29.00	43.24	175.97
14:30	40	9.14	9.23	10.01	9.35	9.29	9.40	4.25	2.76	29.00	43.83	186.45
15:30	40	8.72	8.91	9.23	9.43	9.04	9.07	4.41	2.77	29.00	44.13	194.67
16:30	40	9.97	8.87	9.22	9.38	8.78	9.24	4.33	2.80	29.00	45.01	194.80
17:30	40	8.79	9.33	10.27	9.04	10.02	9.49	4.21	2.82	29.00	45.60	192.17

(Fri)11-Jun-2021-Float measurement

Distance			No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
11:30	40	31.33	33.41	27.56	30.86	30.74	30.78	1.30	1.20	24.00	10.42	13.54
12:30	40	32.84	30.37	32.90	31.65	31.18	31.79	1.26	1.20	24.00	10.42	13.11
13:30	40	31.86	34.65	31.76	30.77	30.45	31.90	1.25	1.20	24.00	10.42	13.06

<u>(Fri)11-Jun-2021</u>

	Deter	mining the W	ater Discharge	e (Q) from cur	rent meter rea	udings		
Location:		Downstream	of Dam					
Date:		<u>(Fri)11-Jun-2</u>	2021					
Weather:		Fine (Dry we	eather)					
River	<u>Flc</u>	w Velocity (m	<u>1/s)</u>	Depth	Width	Area	Discharge	
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>	
<u>1</u>	<u>0.199</u>	0.295	0.247	0.280	<u>1</u>	0.28	0.069	
<u>2</u>	<u>0.335</u>	<u>0.510</u>	0.423	0.189	<u>1</u>	<u>0.189</u>	0.080	
<u>3</u>	<u>0.299</u>	<u>0.431</u>	<u>0.365</u>	<u>0.150</u>	<u>1</u>	<u>0.15</u>	0.055	
<u>4</u>	<u>0.516</u>	0.669	<u>0.593</u>	0.240	<u>1</u>	0.24	<u>0.142</u>	
5	0.511	0.526	<u>0.519</u>	0.350	<u>1</u>	<u>0.35</u>	<u>0.181</u>	
<u>6</u>	0.457	<u>0.543</u>	0.500	0.372	<u>1</u>	0.372	<u>0.186</u>	
<u>7</u>	0.671	0.933	0.802	0.368	<u>1</u>	0.368	0.295	
<u>8</u>	0.595	0.721	0.658	0.375	<u>1</u>	<u>0.375</u>	0.247	
<u>9</u>	0.65	<u>1.288</u>	0.969	0.345	<u>1</u>	0.345	<u>0.334</u>	
<u>10</u>	0.484	1.161	0.823	0.308	<u>1</u>	0.308	0.253	
<u>11</u>	0.674	0.725	0.700	0.361	<u>1</u>	0.361	0.253	
<u>12</u>	0.448	<u>1.009</u>	0.729	0.260	<u>1</u>	0.26	<u>0.189</u>	
<u>13</u>	0.447	0.692	0.570	0.360	<u>1</u>	0.36	0.205	
<u>14</u>	0.537	1.132	0.835	0.350	<u>1</u>	0.35	0.292	
<u>15</u>	0.694	<u>1.135</u>	<u>0.915</u>	0.347	<u>1</u>	0.347	<u>0.317</u>	
<u>16</u>	0.618	<u>1.052</u>	0.835	0.394	<u>1</u>	0.394	0.329	
<u>17</u>	0.855	<u>1.103</u>	0.979	0.385	<u>1</u>	0.385	0.377	
<u>18</u>	0.528	<u>0.758</u>	<u>0.643</u>	0.369	<u>1</u>	0.369	0.237	
<u>19</u>	0.536	0.614	0.575	0.427	<u>1</u>	0.427	0.246	
<u>20</u>	0.754	0.838	0.796	0.348	<u>1</u>	0.348	0.277	
21	0.809	1.059	0.934	0.444	<u>1</u>	0.444	0.415	
22	0.221	1.035	0.628	0.335	<u>1</u>	0.335	0.210	
<u>23</u>	0.216	0.940	0.578	0.298	<u>1</u>	0.298	<u>0.172</u>	
<u>24</u>	<u>0.132</u>	0.305	<u>0.219</u>	0.281	<u>1</u>	0.281	0.061	
		Total			<u>24</u>	<u>7.936</u>	<u>5.424</u>	
Water Level	Depth (m)				0.360			
Total Area (A	<u>v)</u>		7.936					
Total Dischar	ge (Q)				5.424			

(Thu)17-Jun-2021-Float measurement

Time	Distance		No. Tri	als (Time i	in Sec. <u>)</u>		Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	<u>1</u>	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	(m ²)	<u>(Q)</u>
10:00	<u>30</u>	46.00	<u>45.00</u>	42.00	43.00	45.00	44.20	0.68	0.535	25.50	2.19	<u>1.49</u>
<u>11:00</u>	<u>30</u>	45.00	45.00	43.00	46.00	43.00	44.40	0.68	<u>0.490</u>	<u>25.50</u>	1.86	<u>1.25</u>

<u>12:00</u>	<u>30</u>	46.00	44.00	42.00	42.00	<u>45.00</u>	43.80	0.68	<u>0.514</u>	<u>25.50</u>	2.03	<u>1.39</u>
13:00	30	44.00	40.00	46.00	45.00	42.00	43.40	0.69	<u>0.510</u>	25.50	2.00	1.39
14:00	30	43.00	45.00	44.00	41.00	46.00	43.80	0.68	0.520	25.50	2.08	1.42
15:00	<u>30</u>	48.00	42.00	40.00	43.00	43.00	43.20	0.69	0.525	25.50	2.12	1.47

<u>(Thu)17-Jun-2021</u>

	Deter	mining the W	ater Discharge	e (Q) from cur	rent meter rea	adings			
Location:		Downstream	n of Dam						
Date:		<u>(Thu)17-Jun</u>	-2021						
Weather:		Fine (Dry we	eather)						
River	<u>Flc</u>	ow Velocity (n	n/s)	Depth	Width	Area	Discharge		
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>		
<u>1</u>	<u>0.019</u>	0.094	0.057	<u>0.168</u>	<u>1</u>	<u>0.168</u>	0.009		
2	<u>0.182</u>	0.374	0.278	0.270	<u>1</u>	0.27	0.075		
<u>3</u>	0.266	0.523	0.395	0.334	<u>1</u>	0.334	<u>0.132</u>		
<u>4</u>	0.263	<u>0.631</u>	0.447	0.435	<u>1</u>	0.435	<u>0.194</u>		
<u>5</u>	<u>0.391</u>	<u>0.671</u>	<u>0.531</u>	0.368	<u>1</u>	0.368	<u>0.195</u>		
<u>6</u>	0.288	0.524	0.406	0.399	<u>1</u>	0.399	<u>0.162</u>		
<u>7</u>	0.445	<u>0.855</u>	<u>0.650</u>	<u>0.379</u>	<u>1</u>	<u>0.379</u>	<u>0.246</u>		
8	0.63	1.005	<u>0.818</u>	0.287	<u>1</u>	0.287	0.235		
<u>9</u>	0.612	0.870	0.741	<u>0.318</u>	<u>1</u>	<u>0.318</u>	0.236		
<u>10</u>	0.696	0.925	<u>0.811</u>	<u>0.187</u>	<u>1</u>	<u>0.187</u>	<u>0.152</u>		
<u>11</u>	<u>0.319</u>	0.798	0.559	<u>0.369</u>	<u>1</u>	0.369	0.206		
<u>12</u>	0.366	0.767	<u>0.567</u>	<u>0.279</u>	<u>1</u>	<u>0.279</u>	<u>0.158</u>		
<u>13</u>	<u>0.455</u>	0.792	0.624	<u>0.358</u>	<u>1</u>	<u>0.358</u>	0.223		
<u>14</u>	0.698	<u>1.034</u>	0.866	0.244	<u>1</u>	0.244	<u>0.211</u>		
<u>15</u>	<u>0.385</u>	<u>0.612</u>	<u>0.499</u>	<u>0.326</u>	<u>1</u>	0.326	<u>0.163</u>		
<u>16</u>	0.398	0.762	0.580	<u>0.351</u>	<u>1</u>	<u>0.351</u>	0.204		
<u>17</u>	0.345	0.603	0.474	<u>0.319</u>	<u>1</u>	<u>0.319</u>	<u>0.151</u>		
<u>18</u>	<u>0.321</u>	<u>0.511</u>	<u>0.416</u>	<u>0.210</u>	<u>1</u>	0.21	0.087		
<u>19</u>	0.289	0.388	0.339	0.166	<u>1</u>	0.166	0.056		
<u>20</u>	0.062	0.187	0.125	0.248	<u>1</u>	0.248	0.031		
<u>21</u>	0.075	<u>0.185</u>	0.130	0.137	<u>1</u>	0.137	0.018		
22	0.070	0.178	<u>0.124</u>	<u>0.125</u>	<u>1</u>	0.125	0.016		
23	0.062	0.173	0.118	0.147	<u>1</u>	0.147	0.017		
		Total			23	6.424	<u>3.177</u>		
Water Level	Depth (m)		<u>0.399</u>						
Total Area (A	<u>\)</u>		<u>6.424</u>						
Total Dischar	rge (Q)		<u>3.177</u>						

Time	Distance		No. Tri	als (Time	in Sec. <u>)</u>		Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	<u>1</u>	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	(m ²)	<u>(Q)</u>
<u>9:00</u>	<u>30</u>	42.00	42.00	<u>41.00</u>	42.00	<u>41.00</u>	<u>41.60</u>	<u>0.72</u>	<u>0.514</u>	25.50	2.03	<u>1.47</u>
<u>10:00</u>	<u>30</u>	44.00	40.00	42.00	42.00	40.00	<u>41.60</u>	<u>0.72</u>	<u>0.515</u>	25.50	2.04	<u>1.47</u>
<u>11:00</u>	<u>30</u>	42.00	43.00	40.00	41.00	43.00	41.80	0.72	0.508	25.50	1.99	1.43
12:00	<u>30</u>	<u>41.00</u>	41.00	42.00	43.00	43.00	42.00	0.71	0.505	25.50	1.97	<u>1.41</u>
<u>13:00</u>	<u>30</u>	43.00	42.00	39.00	42.00	<u>43.00</u>	<u>41.80</u>	<u>0.72</u>	<u>0.500</u>	25.50	1.93	<u>1.39</u>
<u>14:00</u>	<u>30</u>	<u>41.00</u>	42.00	<u>41.00</u>	43.00	42.00	<u>41.80</u>	<u>0.72</u>	0.506	25.50	1.97	<u>1.42</u>
15:00	30	39.00	44.00	42.00	42.00	41.00	41.60	0.72	0.505	25.50	1.97	1.42
16:00	30	42.00	41.00	41.00	40.00	42.00	41.20	0.73	0.508	25.50	1.99	1.45

(Fri)18-Jun-2021-Float measurement

(Fri)18-Jun-2021

	Deter	mining the W	ater Discharg	e (Q) from cui	rrent meter rea	adings	
Location:		Downstream	of Dam				
Date:		<u>(Fri)18-Jun-2</u>	2021				
Weather:		Fine (Dry we	ather)				
River	Flo	w Velocity (m	<u>/s)</u>	Depth	Width	Area	Discharge
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>
<u>1</u>	<u>0.065</u>	0.305	<u>0.185</u>	<u>0.215</u>	<u>1</u>	<u>0.215</u>	0.040
<u>2</u>	0.225	<u>0.374</u>	0.300	<u>0.154</u>	<u>1</u>	<u>0.154</u>	0.046
<u>3</u>	0.242	0.505	0.374	<u>0.165</u>	<u>1</u>	<u>0.165</u>	0.062
4	<u>0.515</u>	0.680	0.598	<u>0.172</u>	<u>1</u>	<u>0.172</u>	<u>0.103</u>
<u>5</u>	<u>0.450</u>	0.708	0.579	0.236	<u>1</u>	0.236	<u>0.137</u>
<u>6</u>	0.488	0.700	0.594	0.270	<u>1</u>	<u>0.27</u>	<u>0.160</u>
<u>7</u>	0.502	0.719	<u>0.611</u>	0.332	<u>1</u>	<u>0.332</u>	0.203
<u>8</u>	0.528	0.627	0.578	0.326	<u>1</u>	0.326	<u>0.188</u>
<u>9</u>	0.283	0.632	0.458	<u>0.537</u>	<u>1</u>	<u>0.537</u>	0.246
<u>10</u>	<u>0.26</u>	0.624	0.442	<u>0.100</u>	<u>1</u>	<u>0.1</u>	0.044
<u>11</u>	0.337	0.603	0.470	<u>0.087</u>	<u>1</u>	<u>0.087</u>	0.041
<u>12</u>	0.705	0.042	<u>0.374</u>	<u>0.159</u>	<u>1</u>	<u>0.159</u>	0.059
<u>13</u>	0.713	0.928	0.821	0.253	<u>1</u>	<u>0.253</u>	0.208
<u>14</u>	0.756	1.229	0.993	0.256	<u>1</u>	<u>0.256</u>	<u>0.254</u>
<u>15</u>	0.544	0.707	0.626	0.220	<u>1</u>	0.22	<u>0.138</u>
<u>16</u>	0.578	0.790	0.684	0.256	<u>1</u>	0.256	<u>0.175</u>
<u>17</u>	0.874	1.058	0.966	0.323	<u>1</u>	0.323	0.312
<u>18</u>	0.657	0.983	0.820	0.283	<u>1</u>	0.283	0.232
<u>19</u>	0.488	0.619	0.554	0.313	<u>1</u>	0.313	0.173
20	0.476	0.694	0.585	0.267	<u>1</u>	0.267	<u>0.156</u>
<u>21</u>	0.546	0.831	0.689	0.329	<u>1</u>	0.329	0.227
22	0.377	0.602	0.490	0.292	<u>1</u>	0.292	0.143

23	<u>0.120</u>	0.130	0.125	0.238	<u>1</u>	0.238	0.030			
24	<u>0.140</u>	0.256	<u>0.198</u>	0.317	<u>1</u>	0.317	0.063			
<u>25</u>	<u>0.366</u>	0.398	0.382	0.106	<u>1</u>	<u>0.106</u>	0.040			
		<u>Total</u>			<u>25</u>	<u>6.206</u>	<u>3.479</u>			
Water Level	Depth (m)				<u>0.537</u>					
Total Area (A	<u>A)</u>				6.206					
Total Discha	rge (Q)		<u>3.479</u>							

(Sat)19-Jun-2021-Float measurement

Time	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	<u>1</u>	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	(m²)	<u>(Q)</u>
9:00	<u>30</u>	36.00	40.00	37.00	38.00	36.00	37.40	0.80	0.480	25.50	1.78	1.43
10:00	<u>30</u>	<u>41.00</u>	38.00	36.00	40.00	37.00	38.40	0.78	0.440	25.50	1.49	1.16
<u>11:00</u>	<u>30</u>	37.00	37.00	38.00	39.00	<u>38.00</u>	<u>37.80</u>	<u>0.79</u>	<u>0.460</u>	25.50	1.63	<u>1.30</u>

<u>(Sat)19-Jun-2021</u>

	Deter	mining the W	ater Discharge	e (Q) from cu	rrent meter re	adings	
Location:		Downstream	of Dam				
Date:		<u>(Sat)19-Jun-</u>	2021				
Weather:		Fine (Dry we	eather)				
River	Flo	ow Velocity (n	<u>1/s)</u>	Depth	Width	Area	Discharge
Width (m)	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>
<u>1</u>	0.008	0.032	0.020	<u>0.112</u>	<u>1</u>	<u>0.112</u>	0.002
2	0.112	0.300	0.206	<u>0.185</u>	<u>1</u>	<u>0.185</u>	0.038
<u>3</u>	0.216	0.359	0.288	0.212	<u>1</u>	0.212	<u>0.061</u>
<u>4</u>	0.332	0.429	0.381	<u>0.143</u>	<u>1</u>	<u>0.143</u>	<u>0.054</u>
5	<u>0.457</u>	0.640	0.549	<u>0.168</u>	<u>1</u>	<u>0.168</u>	<u>0.092</u>
6	0.492	0.697	0.595	0.275	<u>1</u>	0.275	<u>0.163</u>
<u>7</u>	0.407	<u>0.654</u>	0.531	0.282	<u>1</u>	0.282	<u>0.150</u>
8	0.57	0.739	0.655	0.346	<u>1</u>	0.346	0.226
9	0.593	<u>0.735</u>	0.664	0.284	<u>1</u>	0.284	<u>0.189</u>
<u>10</u>	0.564	0.855	<u>0.710</u>	0.304	<u>1</u>	0.304	<u>0.216</u>
<u>11</u>	0.582	<u>1.136</u>	0.859	0.272	<u>1</u>	0.272	<u>0.234</u>
<u>12</u>	0.698	<u>0.810</u>	0.754	<u>0.318</u>	<u>1</u>	<u>0.318</u>	0.240
<u>13</u>	0.587	<u>0.973</u>	0.780	<u>0.175</u>	<u>1</u>	<u>0.175</u>	<u>0.137</u>
<u>14</u>	0.51	0.894	0.702	0.273	<u>1</u>	0.273	<u>0.192</u>
<u>15</u>	0.762	1.422	1.092	0.230	<u>1</u>	0.23	0.251
<u>16</u>	0.597	<u>0.916</u>	0.757	0.277	<u>1</u>	0.277	<u>0.210</u>
<u>17</u>	0.599	0.992	0.796	0.354	<u>1</u>	0.354	0.282
<u>18</u>	0.528	0.986	0.757	0.293	<u>1</u>	0.293	0.222
<u>19</u>	0.523	0.798	0.661	0.326	<u>1</u>	0.326	0.215

<u>20</u>	0.400	0.681	0.541	0.336	<u>1</u>	0.336	0.182			
<u>21</u>	0.482	0.682	0.582	0.281	<u>1</u>	<u>0.281</u>	<u>0.164</u>			
<u>22</u>	<u>0.498</u>	0.838	0.668	<u>0.371</u>	<u>1</u>	<u>0.371</u>	0.248			
23	0.424	0.656	0.540	0.245	<u>1</u>	0.245	<u>0.132</u>			
<u>24</u>	<u>0.398</u>	0.528	0.463	0.202	<u>1</u>	0.202	0.094			
<u>25</u>	<u>0.110</u>	<u>0.139</u>	<u>0.125</u>	<u>0.155</u>	<u>1</u>	<u>0.155</u>	<u>0.019</u>			
		<u>Total</u>			<u>25</u>	<u>6.419</u>	<u>4.011</u>			
Water Level	Depth (m)				<u>0.371</u>					
Total Area (A	<u>A)</u>		<u>6.419</u>							
Total Discha	rge (Q)		<u>4.011</u>							

(Sun)04-Jul-2021-Float measurement

Time	Distance	No. Trials (Time in Sec.)					Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	<u>1</u>	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	(m ²)	<u>(Q)</u>
<u>10:00</u>	<u>40</u>	42.00	40.00	<u>39.00</u>	<u>45.00</u>	<u>41.00</u>	<u>41.40</u>	<u>0.97</u>	<u>0.620</u>	<u>17.00</u>	2.86	<u>2.77</u>
<u>11:00</u>	<u>40</u>	43.00	43.00	42.00	43.00	39.00	42.00	0.95	0.580	17.00	2.52	2.40
12:00	<u>40</u>	44.00	41.00	40.00	40.00	44.00	41.80	0.96	0.585	17.00	2.56	2.45
13:00	<u>40</u>	42.00	43.00	42.00	39.00	41.00	41.40	0.97	0.600	17.00	2.67	2.58

(Sat)16-Oct-2021

	Deter	mining the W	ater Discharg	e (Q) from cur	rent meter rea	adings	
Location:		Downstream	of Dam				
Date:		(Sat)16-Oct-	2021	Stat Time : 1	:00 PM		
Weather:		Rain & Floo	ding	Stop Time :	2:00 PM		
River Width	F	low Velocity (m/s)	Depth	Width	Area	Discharge
<u>(m)</u>	<u>V1</u>	<u>v2</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>
<u>1</u>	0.362	<u>0.597</u>	0.480	0.251	<u>1</u>	<u>0.251</u>	<u>0.120</u>
<u>2</u>	<u>0.518</u>	0.761	0.640	0.282	1	0.282	<u>0.180</u>
3	0.742	0.900	<u>0.821</u>	0.304	1	0.304	0.250
4	0.700	0.763	0.732	<u>0.281</u>	1	<u>0.281</u>	0.206
5	<u>0.790</u>	<u>0.403</u>	0.597	0.380	1	0.380	0.227
<u>6</u>	0.694	0.563	0.629	0.342	<u>1</u>	0.342	0.215
<u>7</u>	0.787	<u>0.944</u>	0.866	0.287	<u>1</u>	0.287	0.248
8	0.477	<u>0.879</u>	0.678	<u>0.331</u>	<u>1</u>	0.331	0.224
<u>9</u>	0.665	0.921	0.793	<u>0.474</u>	<u>1</u>	0.474	0.376
<u>10</u>	0.605	<u>1.108</u>	0.857	0.462	<u>1</u>	<u>0.462</u>	0.396
<u>11</u>	0.801	1.149	0.975	0.487	<u>1</u>	0.487	0.475
<u>12</u>	0.682	1.146	0.914	0.400	<u>1</u>	0.400	0.366
13	0.799	1.184	0.992	0.699	<u>1</u>	0.699	0.693
14	0.646	1.186	0.916	0.674	1	0.674	0.617
15	0.733	1.209	0.971	0.854	<u>1</u>	0.854	0.829

<u>16</u>	0.645	1.200	0.923	0.988	<u>1</u>	0.988	0.911			
<u>17</u>	<u>1.165</u>	<u>1.336</u>	<u>1.251</u>	0.960	<u>1</u>	0.960	1.200			
<u>18</u>	<u>0.827</u>	<u>1.114</u>	<u>0.971</u>	0.848	<u>1</u>	0.848	0.823			
<u>19</u>	<u>0.979</u>	1.095	<u>1.037</u>	0.625	1	0.625	0.648			
<u>20</u>	<u>0.769</u>	<u>1.072</u>	<u>0.921</u>	0.786	<u>1</u>	0.786	0.724			
<u>21</u>	0.745	0.753	0.749	0.809	<u>1</u>	0.809	0.606			
22	0.606	0.694	0.650	0.824	<u>1</u>	0.824	0.536			
23	<u>0.354</u>	0.406	<u>0.380</u>	<u>0.724</u>	<u>1</u>	0.724	0.275			
24	<u>0.285</u>	0.288	<u>0.287</u>	0.606	<u>1</u>	0.606	0.174			
25	0.259	0.301	0.280	0.285	<u>1</u>	0.285	0.080			
		<u>Total</u>			<u>25</u>	<u>13.963</u>	<u>11.399</u>			
Water Level De	epth (m)		0.371							
Total Area (A)					13.963					
Total Discharge	e (Q)		<u>11.399</u>							

(Sat)23-Oct-2021

Determining the Water Discharge (Q) from current meter readings												
Location:		Downstream	of Dam									
Date:		(Sat)23-Oct-2	021	Stat Time :	10:50 AM							
Weather:		Cloudy (No f	looding)	Stop Time	: 12:25 PM							
River	F	low Velocity (n	<u>n/s)</u>	Depth	<u>Width</u>	Area	Discharge					
Width (m)	<u>V1-0.2D</u>	<u>V2-0.8D</u>	Mean	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(m³/s)</u>					
<u>1</u>	<u>0.174</u>	<u>0.203</u>	<u>0.189</u>	0.146	<u>0.5</u>	0.073	<u>0.014</u>					
<u>2</u>	0.384	<u>0.430</u>	<u>0.407</u>	<u>0.123</u>	<u>0.5</u>	0.062	0.025					
<u>3</u>	0.328	<u>0.447</u>	<u>0.387</u>	0.122	<u>0.5</u>	0.061	0.024					
<u>4</u>	0.844	<u>0.962</u>	<u>0.903</u>	<u>0.158</u>	<u>0.5</u>	0.079	<u>0.071</u>					
<u>5</u>	0.692	0.827	<u>0.760</u>	0.256	<u>0.5</u>	0.128	0.097					
6	0.584	0.780	0.682	0.224	0.5	<u>0.112</u>	0.076					
<u>7</u>	0.428	0.692	<u>0.560</u>	0.244	<u>0.5</u>	0.122	0.068					
8	<u>0.476</u>	0.662	<u>0.569</u>	0.092	0.5	<u>0.046</u>	<u>0.026</u>					
9	<u>0.376</u>	<u>0.487</u>	<u>0.432</u>	<u>0.168</u>	0.5	0.084	<u>0.036</u>					
<u>10</u>	0.536	0.742	0.639	0.114	0.5	0.057	0.036					
<u>11</u>	0.524	0.728	0.626	0.248	<u>0.5</u>	<u>0.124</u>	<u>0.078</u>					
<u>12</u>	0.434	<u>0.619</u>	0.526	0.288	<u>0.5</u>	<u>0.144</u>	<u>0.076</u>					
<u>13</u>	0.456	0.760	0.608	0.362	0.5	<u>0.181</u>	0.110					
14	0.624	1.053	0.838	0.204	0.5	0.102	0.086					
<u>15</u>	0.804	1.144	<u>0.974</u>	0.228	0.5	<u>0.114</u>	0.111					
16	0.636	<u>0.984</u>	<u>0.810</u>	0.202	0.5	<u>0.101</u>	0.082					
17	0.524	1.228	0.876	0.236	0.5	0.118	0.103					
18	0.684	0.980	0.832	0.272	0.5	0.136	<u>0.113</u>					

<u>19</u>	0.376	0.977	0.677	0.354	<u>0.5</u>	<u>0.177</u>	0.120		
20	0.692	1.002	0.847	0.538	0.5	0.269	0.228		
21	0.724	1.368	1.046	0.616	0.5	0.308	0.322		
22	0.484	0.640	0.562	0.472	0.5	0.236	0.133		
23	0.688	<u>1.119</u>	0.903	0.596	<u>0.5</u>	0.298	0.269		
24	<u>0.612</u>	0.946	<u>0.779</u>	<u>0.610</u>	0.5	0.305	0.238		
<u>25</u>	<u>0.812</u>	<u>1.156</u>	<u>0.984</u>	<u>0.472</u>	0.5	0.236	0.232		
<u>26</u>	0.596	1.236	<u>0.916</u>	0.526	0.5	0.263	<u>0.241</u>		
<u>27</u>	0.744	<u>1.312</u>	1.028	0.636	0.5	<u>0.318</u>	0.327		
<u>28</u>	0.608	1.238	0.923	0.685	0.5	0.343	0.316		
<u>29</u>	0.604	<u>1.354</u>	<u>0.979</u>	0.632	<u>0.5</u>	<u>0.316</u>	0.309		
<u>30</u>	0.724	<u>1.403</u>	<u>1.063</u>	0.630	<u>0.5</u>	<u>0.315</u>	0.335		
<u>31</u>	0.712	<u>1.414</u>	<u>1.063</u>	0.666	<u>0.5</u>	0.333	0.354		
<u>32</u>	<u>0.876</u>	<u>1.400</u>	<u>1.138</u>	<u>0.548</u>	<u>0.5</u>	0.274	<u>0.312</u>		
<u>33</u>	<u>0.576</u>	<u>1.467</u>	<u>1.022</u>	0.582	<u>0.5</u>	<u>0.291</u>	0.297		
<u>34</u>	<u>0.696</u>	<u>1.481</u>	<u>1.089</u>	<u>0.270</u>	<u>0.5</u>	<u>0.135</u>	<u>0.147</u>		
<u>35</u>	0.806	<u>1.407</u>	<u>1.107</u>	<u>0.256</u>	<u>0.5</u>	<u>0.128</u>	<u>0.142</u>		
<u>36</u>	0.704	<u>1.288</u>	<u>0.996</u>	0.218	0.5	<u>0.109</u>	<u>0.109</u>		
<u>37</u>	0.672	<u>1.163</u>	<u>0.918</u>	0.282	<u>0.5</u>	<u>0.141</u>	<u>0.129</u>		
<u>38</u>	0.636	<u>0.809</u>	<u>0.723</u>	<u>0.258</u>	<u>0.5</u>	<u>0.129</u>	<u>0.093</u>		
<u>39</u>	0.344	<u>0.647</u>	<u>0.495</u>	0.328	<u>0.5</u>	<u>0.164</u>	<u>0.081</u>		
<u>40</u>	0.400	<u>0.584</u>	<u>0.492</u>	<u>0.188</u>	<u>0.5</u>	0.094	<u>0.046</u>		
<u>41</u>	0.444	<u>0.542</u>	<u>0.493</u>	0.233	<u>0.5</u>	<u>0.117</u>	<u>0.057</u>		
42	0.236	0.424	0.330	0.476	0.5	0.238	0.079		
<u>43</u>	0.212	<u>0.351</u>	0.282	0.260	0.5	<u>0.130</u>	0.037		
44	<u>0.124</u>	0.248	<u>0.186</u>	<u>0.234</u>	<u>0.5</u>	<u>0.117</u>	0.022		
		Total	<u>22</u> <u>7.628</u> <u>6.207</u>						
Water Level D	epth (m)		<u>0.371</u>						
Total Area (A)			7.628						
Total Discharg	je (Q)	<u>6.207</u>							

(Fri)05-Nov-2021-Float measurement

T :	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	<u>1</u>	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	(m ²)	<u>(Q)</u>
<u>8:00</u>	<u>50</u>	<u>43.75</u>	42.65	<u>40.11</u>	<u>41.56</u>	<u>39.35</u>	<u>41.48</u>	<u>1.21</u>	<u>0.57</u>	26.00	2.45	<u>2.95</u>
8:30	50	38.43	42.34	41.31	41.69	43.47	41.45	1.21	0.57	26.00	2.44	2.94
10:00	50	34.66	45.22	48.85	39.47	41.56	<u>41.95</u>	<u>1.19</u>	0.57	26.00	2.43	2.90
<u>10:30</u>	<u>50</u>	<u>41.09</u>	<u>56.16</u>	<u>36.40</u>	<u>43.76</u>	54.00	46.28	<u>1.08</u>	0.57	26.00	<u>2.43</u>	2.62
12:00	<u>50</u>	<u>60.49</u>	<u>60.42</u>	<u>60.47</u>	<u>60.41</u>	<u>60.31</u>	60.42	<u>0.83</u>	<u>0.57</u>	26.00	2.42	2.00
12:30	50	60.37	60.36	60.03	60.47	60.38	60.32	0.83	0.57	26.00	2.41	2.00
14:00	50	60.59	60.26	60.52	60.43	60.32	60.42	0.83	0.56	26.00	2.40	1.99
14:30	<u>50</u>	60.37	60.45	60.50	60.32	60.43	60.41	0.83	0.56	26.00	2.40	<u>1.99</u>
<u>17:00</u>	<u>50</u>	<u>60.38</u>	<u>60.40</u>	<u>60.36</u>	<u>60.32</u>	60.29	60.35	0.83	0.56	26.00	2.40	1.99
17:30	50	60.39	60.33	60.51	60.49	60.46	60.44	0.83	0.56	26.00	2.40	1.98

T :	Distance		No. Tri	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
lime	<u>(m)</u>	1	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	<u>(m²)</u>	<u>(Q)</u>
<u>8:00</u>	<u>50</u>	<u>47.59</u>	<u>45.00</u>	<u>41.69</u>	40.62	<u>43.13</u>	43.61	<u>1.15</u>	0.60	27.00	2.67	3.06
<u>8:30</u>	<u>50</u>	<u>41.63</u>	<u>40.87</u>	<u>40.75</u>	<u>43.25</u>	44.28	42.16	<u>1.19</u>	<u>0.60</u>	<u>27.00</u>	2.67	<u>3.17</u>
10:00	<u>50</u>	47.37	43.40	39.50	43.00	40.85	42.82	<u>1.17</u>	0.60	27.00	2.67	3.12
<u>10:30</u>	<u>50</u>	<u>41.62</u>	40.70	42.38	43.45	<u>41.13</u>	41.86	<u>1.19</u>	0.60	27.00	2.67	<u>3.19</u>
<u>12:00</u>	<u>50</u>	44.34	39.82	43.09	<u>45.69</u>	42.50	<u>43.09</u>	<u>1.16</u>	0.60	27.00	2.67	<u>3.10</u>
<u>12:30</u>	<u>50</u>	<u>41.25</u>	35.81	<u>38.40</u>	26.35	39.62	<u>36.29</u>	<u>1.38</u>	0.60	27.00	2.67	<u>3.68</u>
14:00	<u>50</u>	50.30	49.47	51.12	32.34	40.72	44.79	1.12	0.60	27.00	2.67	2.98
<u>14:10</u>	<u>50</u>	38.50	44.56	39.93	43.62	45.56	42.43	<u>1.18</u>	0.60	27.00	2.67	<u>3.15</u>
<u>14:20</u>	<u>50</u>	<u>39.78</u>	36.56	52.92	42.37	<u>41.94</u>	42.71	<u>1.17</u>	0.60	27.00	2.67	<u>3.13</u>
<u>14:30</u>	<u>50</u>	42.00	<u>41.50</u>	42.37	<u>44.10</u>	<u>39.25</u>	<u>41.84</u>	<u>1.19</u>	0.60	27.00	2.67	<u>3.19</u>
16:30	<u>50</u>	12.00	12.75	15.85	16.00	18.06	14.93	3.35	1.84	43.00	20.46	68.51
<u>16:40</u>	50	14.06	15.89	15.91	12.15	17.86	<u>15.17</u>	<u>3.30</u>	<u>1.80</u>	43.00	19.62	64.65
<u>16:50</u>	<u>50</u>	<u>16.75</u>	<u>15.43</u>	<u>16.75</u>	<u>15.47</u>	16.31	<u>16.14</u>	<u>3.10</u>	<u>1.78</u>	43.00	19.24	59.60
17:10	<u>50</u>	15.35	15.65	17.94	17.00	16.47	16.48	<u>3.03</u>	<u>1.78</u>	43.00	19.24	58.37
17:20	<u>50</u>	16.05	<u>15.16</u>	16.59	17.56	17.60	16.59	<u>3.01</u>	1.76	43.00	18.86	56.83
17:30	<u>50</u>	17.43	17.09	17.65	18.44	16.35	17.39	2.87	1.75	43.00	18.67	53.67

(Sat)06-Nov-2021-Float measurement

(Sun)07-Nov-2021-Float measurement

Time	Distance	ce <u>No. Trials (Time in Sec.)</u>					Mean	Velocity	Depth	Width	Area	Discharge
IIme	<u>(m)</u>	1	2	3	4	5	Time(s)	<u>(m/s)</u>	<u>(m)</u>	<u>(m)</u>	(m ²)	<u>(Q)</u>
<u>8:00</u>	<u>50</u>	30.60	33.06	32.50	30.52	<u>29.70</u>	<u>31.28</u>	1.60	<u>0.75</u>	30.00	<u>4.11</u>	<u>6.57</u>
<u>8:30</u>	<u>50</u>	32.72	32.31	<u>34.37</u>	32.28	32.35	<u>32.81</u>	<u>1.52</u>	<u>0.72</u>	30.00	3.82	<u>5.83</u>
<u>10:00</u>	50	33.28	34.37	33.16	34.59	35.21	<u>34.12</u>	<u>1.47</u>	0.70	30.00	3.63	5.32
<u>10:30</u>	50	34.00	34.50	33.38	32.66	34.58	33.82	1.48	0.70	30.00	3.63	5.37
<u>12:00</u>	<u>50</u>	<u>34.18</u>	32.27	35.26	32.27	<u>33.84</u>	<u>33.56</u>	<u>1.49</u>	<u>0.73</u>	30.00	3.92	<u>5.84</u>
12:30	<u>50</u>	32.91	30.82	35.84	34.75	32.25	33.31	<u>1.50</u>	0.75	30.00	4.11	<u>6.17</u>

Site 3. Power house

(Wed)01-Jul-2020

	Determiı	ning the Wa	ter Discharg	e (Q) from c	urrent mete	r readings		
Location:		Power Hou	ISE					
Date:		(Wed)01-Ju	ul-2020					
Weather:		Fine						
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge	
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)	
1	0.315	0.755	0.535	0.156	1	0.156	0.083	
2	0.188	0.564	0.376	0.317	1	0.317	0.119	
3	0.605	1.248	0.927	0.560	1	0.56	0.519	
4	0.799	1.380	1.090	0.556	1	0.556	0.606	
5	0.732	1.549	1.141	0.539	1	0.539	0.615	
6	0.611	1.382	0.997	0.668	1	0.668	0.666	
7	0.817	1.339	1.078	0.778	1	0.778	0.839	
8	0.610	1.038	0.824	0.796	1	0.796	0.656	
9	0.633	0.818	0.726	0.623	1	0.623	0.452	
10	0.573	0.577	0.575	0.477	1	0.477	0.274	
11	0.077	0.240	0.159	0.315	1	0.315	0.050	
12	0.024	0.044	0.034	0.086	1	0.086	0.003	
		Total			12	5.871	4.881	
Water Level	Depth (m)		0.450					
Total Area (A)		5.871					
Total Discha	rge (Q)				4.881			

٦

(Tue)07-Jul-2020

	Deter	mining the W	ater Discharg	je (Q) from cur	rent meter rea	dings		
Location:		Power Hous	e					
Date:		(Tue)07-Jul-	2020					
Weather:		Fine						
River	Fle	ow Velocity (n	n/s)			Area	Discharge	
Width (m)	V1	v2	Mean	Depth (m)	Width (m)	(m²)	(m³/s)	
1	0.223	0.454	0.339	0.127	1	0.127	0.043	
2	0.381	0.553	0.467	0.120	1	0.12	0.056	
3	0.270	0.549	0.410	0.182	1	0.182	0.075	
4	0.476	0.602	0.539	0.153	1	0.153	0.082	
5	0.536	0.620	0.578	0.176	1	0.176	0.102	
6	0.567	0.755	0.661	0.192	1	0.192	0.127	
7	0.588	0.804	0.696	0.189	1	0.189	0.132	
8	0.491	0.487	0.489	0.299	1	0.299	0.146	
9	0.582	0.749	0.666	0.335	1	0.335	0.223	
10	0.612	0.943	0.778	0.222	1	0.222	0.173	
11	0.657	0.841	0.749	0.208	1	0.208	0.156	
12	0.633	0.580	0.607	0.282	1	0.282	0.171	
13	0.666	1.041	0.854	0.272	1	0.272	0.232	
14	0.662	1.158	0.910	0.325	1	0.325	0.296	
15	0.790	1.217	1.004	0.410	1	0.41	0.411	
16	0.811	1.130	0.971	0.511	1	0.511	0.496	
17	0.953	1.164	1.059	0.407	1	0.407	0.431	
18	0.926	1.115	1.021	0.449	1	0.449	0.458	
19	0.832	1.309	1.071	0.320	1	0.32	0.343	
20	0.929	1.209	1.069	0.422	1	0.422	0.451	
21	0.759	1.075	0.917	0.457	1	0.457	0.419	
22	0.713	0.840	0.777	0.346	1	0.346	0.269	
23	0.7	0.935	0.818	0.346	1	0.346	0.283	
24	0.714	0.807	0.761	0.342	1	0.342	0.260	
25	0.427	0.750	0.589	0.349	1	0.349	0.205	
26	0.528	0.686	0.607	0.319	1	0.319	0.194	
27	0.38	0.413	0.397	0.304	1	0.304	0.121	
28	0.323	0.428	0.376	0.262	1	0.262	0.098	
29	0.261	0.281	0.271	0.182	1	0.182	0.049	
		Total			29	8.508	6.501	
Water Level Depth (m)					0.560			
Total Area (A)			8.508					
Total Dischar	ge (Q)				6.501			

(Tue)14-Jul-2020-TSS measurement

	Determin	ning the Wa	ter Discharg	e (Q) from c	urrent mete	r readings		
Location:		Power Hou	ise					
Date:		(Tue)14-Ju	I-2020					
Weather:		Fine						
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge	
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)	
1	0.287	0.501	0.788	0.121	1	0.121	0.095	
2	0.402	0.447	0.849	0.132	1	0.132	0.112	
3	0.432	0.578	1.010	0.203	1	0.203	0.205	
4	0.437	0.587	1.024	0.136	1	0.136	0.139	
5	0.457	0.749	1.206	0.177	1	0.177	0.213	
6	0.422	0.666	1.088	0.242	1	0.242	0.263	
7	0.356	0.445	0.801	0.221	1	0.221	0.177	
8	0.483	0.690	1.173	0.198	1	0.198	0.232	
9	0.43	0.685	1.115	0.187	1	0.187	0.209	
10	0.345	0.520	0.865	0.233	1	0.233	0.202	
11	0.438	0.711	1.149	0.226	1	0.226	0.260	
12	0.421	0.657	1.078	0.313	1	0.313	0.337	
13	0.604	0.899	1.503	0.340	1	0.34	0.511	
14	0.646	0.961	1.607	0.423	1	0.423	0.680	
15	0.642	0.930	1.572	0.454	1	0.454	0.714	
16	0.639	0.843	1.482	0.354	1	0.354	0.525	
17	0.535	0.858	1.393	0.361	1	0.361	0.503	
18	0.591	0.882	1.473	0.340	1	0.34	0.501	
19	0.617	1.016	1.633	0.394	1	0.394	0.643	
20	0.603	0.818	1.421	0.400	1	0.4	0.568	
21	0.508	0.791	1.299	0.413	1	0.413	0.536	
Total					21	5.868	7.626	
Water Level Depth (m)			0.760					
Total Area (A	4)		5.868					
Total Discha	rge (Q)				7.626			

(Tue)04-Aug-2020

	Determir	ning the Wat	ter Discharge	e (Q) from c	urrent meter	r readings		
Location:		Power Hou	se					
Date:		(Tue)04-Au	g-2020					
Weather:		Fine (Dry v	veather)	•			•	
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge	
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)	
1	0.238	0.389	0.314	0.175	1	0.175	0.055	
2	0.336	0.465	0.401	0.181	1	0.181	0.072	
3	0.403	0.529	0.466	0.190	1	0.19	0.089	
4	0.417	0.534	0.476	0.205	1	0.205	0.097	
5	0.526	0.573	0.550	0.224	1	0.224	0.123	
6	0.494	0.578	0.536	0.240	1	0.24	0.129	
7	0.539	0.598	0.569	0.220	1	0.22	0.125	
8	0.471	0.613	0.542	0.231	1	0.231	0.125	
9	0.478	0.728	0.603	0.261	1	0.261	0.157	
10	0.488	0.731	0.610	0.267	1	0.267	0.163	
11	0.493	0.728	0.611	0.349	1	0.349	0.213	
12	0.639	0.753	0.696	0.357	1	0.357	0.248	
13	0.522	0.762	0.642	0.350	1	0.35	0.225	
14	0.597	0.779	0.688	0.372	1	0.372	0.256	
15	0.416	0.676	0.546	0.377	1	0.377	0.206	
16	0.378	0.526	0.452	0.361	1	0.361	0.163	
17	0.321	0.518	0.420	0.350	1	0.35	0.147	
18	0.214	0.503	0.359	0.322	1	0.322	0.115	
19	0.147	0.408	0.278	0.280	1	0.28	0.078	
		Total			19	5.312	2.787	
Water Level	Depth (m)		0.350					
Total Area (A	A)		5.312					
Total Discha	rge (Q)				2.787			

(Tue)25-Aug-2020

	Determir	ning the Wat	ter Discharge	e (Q) from c	urrent meter	r readings				
Location:		Power Hou	se							
Date:		(Tue)25-Au	g-2020							
Weather:		Isolated Sh	ower (No Fl	ooding)						
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.238	0.389	0.314	0.175	1	0.175	0.055			
2	0.336	0.465	0.401	0.181	1	0.181	0.072			
3	0.403	0.529	0.466	0.190	1	0.19	0.089			
4	0.417	0.534	0.476	0.205	1	0.205	0.097			
5	0.526	0.573	0.550	0.224	1	0.224	0.123			
6	0.494	0.578	0.536	0.240	1	0.24	0.129			
7	0.539	0.598	0.569	0.220	1	0.22	0.125			
8	0.471	0.613	0.542	0.231	1	0.231	0.125			
9	0.478	0.728	0.603	0.261	1	0.261	0.157			
10	0.488	0.731	0.610	0.267	1	0.267	0.163			
11	0.493	0.728	0.611	0.349	1	0.349	0.213			
12	0.639	0.753	0.696	0.357	1	0.357	0.248			
13	0.522	0.762	0.642	0.350	1	0.35	0.225			
14	0.597	0.779	0.688	0.372	1	0.372	0.256			
15	0.416	0.676	0.546	0.377	1	0.377	0.206			
16	0.378	0.526	0.452	0.361	1	0.361	0.163			
17	0.321	0.518	0.420	0.350	1	0.35	0.147			
18	0.214	0.503	0.359	0.322	1	0.322	0.115			
19	0.147	0.408	0.278	0.280	1	0.28	0.078			
		Total			19	5.312	2.787			
Water Level	Depth (m)		0.350							
Total Area (A	A)		5.312							
Total Discha	rge (Q)		2.787							

(Tue)01-Sep-2020

	Determir	ning the Wat	ter Discharge	e (Q) from c	urrent meter	r readings			
Location:		Power Hou	ise						
Date:		(Tue)01-Se	p-2020						
Weather:		Isolated Sh	ower (No Fl	ooding)					
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.222	0.313	0.268	0.098	1	0.098	0.026		
2	0.257	0.389	0.323	0.108	1	0.108	0.035		
3	0.326	0.394	0.360	0.121	1	0.121	0.044		
4	0.398	0.497	0.448	0.17	1	0.17	0.076		
5	0.285	0.445	0.365	0.174	1	0.174	0.064		
6	0.321	0.556	0.439	0.167	1	0.167	0.073		
7	0.482	0.564	0.523	0.145	1	0.145	0.076		
8	0.485	0.612	0.549	0.158	1	0.158	0.087		
9	0.597	0.698	0.648	0.214	1	0.214	0.139		
10	0.434	0.625	0.530	0.234	1	0.234	0.124		
11	0.587	0.793	0.690	0.219	1	0.219	0.151		
12	0.481	0.754	0.618	0.329	1	0.329	0.203		
13	0.551	0.801	0.676	0.293	1	0.293	0.198		
14	0.514	0.799	0.657	0.298	1	0.298	0.196		
15	0.560	0.960	0.760	0.326	1	0.326	0.248		
16	0.569	0.889	0.729	0.341	1	0.341	0.249		
17	0.499	0.821	0.660	0.293	1	0.293	0.193		
18	0.446	0.633	0.540	0.333	1	0.333	0.180		
19	0.375	0.560	0.468	0.264	1	0.264	0.123		
		Total			19	4.285	2.48		
Water Level	Depth (m)		0.340						
Total Area (A	4)		4.285						
Total Discha	rge (Q)		2.483						

(Tue)07-Oct-2020

	Determi	ning the Wa	ter Discharg	e (Q) from c	urrent meter	r readings				
Location:		Power Ho	use							
Date:		(Tue)07-0	ct-2020							
Weather:		Isolated Sl	hower (River	condition: A	fter flooding	g)				
River	Flov	w Velocity ((m/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m ³ /s)			
1	0.425	0.474	0.450	0.298	1	0.298	0.134			
2	0.492	0.771	0.632	0.213	1	0.213	0.135			
3	0.504	0.845	0.675	0.188	1	0.188	0.127			
4	0.769	0.853	0.811	0.194	1	0.194	0.157			
5	0.501	0.660	0.581	0.177	1	0.177	0.103			
6	0.659	0.890	0.775	0.147	1	0.147	0.114			
7	0.756	0.974	0.865	0.159	1	0.159	0.138			
8	0.629	0.840	0.735	0.237	1	0.237	0.174			
9	0.529	0.967	0.748	0.252	1	0.252	0.188			
10	0.642	0.900	0.771	0.25	1	0.250	0.193			
11	0.719	1.024	0.872	0.282	1	0.282	0.246			
12	0.895	1.016	0.956	0.31	1	0.310	0.296			
13	0.869	1.209	1.039	0.346	1	0.346	0.359			
14	0.898	1.308	1.103	0.31	1	0.310	0.342			
15	0.895	1.149	1.022	0.345	1	0.345	0.353			
16	0.858	1.158	1.008	0.449	1	0.449	0.453			
17	0.755	1.310	1.033	0.54	1	0.540	0.558			
18	0.827	0.982	0.905	0.52	1	0.520	0.470			
19	0.591	0.911	0.751	0.442	1	0.442	0.332			
20	0.631	0.995	0.813	0.425	1	0.425	0.346			
21	0.519	0.833	0.676	0.383	1	0.383	0.259			
22	0.486	0.922	0.704	0.397	1	0.397	0.279			
23	0.630	0.807	0.719	0.304	1	0.304	0.218			
24	0.691	0.952	0.822	0.323	1	0.323	0.265			
25	0.687	0.924	0.806	0.317	1	0.317	0.255			
		Total			25	7.81	6.49			
Water Leve	el Depth (n	n)	0.550							
Total Area	(A)		0.323							
Total Disch	arge (Q)		0.265							

	Determi	ning the Wa	ter Discharge	e (Q) from c	urrent meter	readings			
Location:		Power Hou	ise						
Date:		(Tue)13-00	ct-2020						
Weather:		Cloudy &	Haze						
River	Flov	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.645	0.744	0.695	0.2	1	0.200	0.139		
2	0.642	0.889	0.766	0.259	1	0.259	0.198		
3	0.710	0.929	0.820	0.222	1	0.222	0.182		
4	0.722	0.943	0.833	0.208	1	0.208	0.173		
5	0.714	0.966	0.840	0.191	1	0.191	0.160		
6	0.721	0.951	0.836	0.228	1	0.228	0.191		
7	0.839	0.987	0.913	0.223	1	0.223	0.204		
8	0.723	1.039	0.881	0.234	1	0.234	0.206		
9	0.806	1.064	0.935	0.269	1	0.269	0.252		
10	0.866	1.055	0.961	0.349	1	0.349	0.335		
11	0.866	1.072	0.969	0.351	1	0.351	0.340		
12	0.811	1.127	0.969	0.306	1	0.306	0.297		
13	0.805	1.194	1.000	0.307	1	0.307	0.307		
14	0.808	1.101	0.955	0.385	1	0.385	0.367		
15	0.829	1.060	0.945	0.387	1	0.387	0.366		
16	0.921	1.045	0.983	0.515	1	0.515	0.506		
17	0.770	0.848	0.809	0.355	1	0.355	0.287		
18	0.820	0.864	0.842	0.28	1	0.280	0.236		
19	0.694	0.785	0.740	0.364	1	0.364	0.269		
20	0.570	0.877	0.724	0.263	1	0.263	0.190		
21	0.566	0.817	0.692	0.276	1	0.276	0.191		
22	0.485	0.850	0.668	0.293	1	0.293	0.196		
23	0.310	0.768	0.539	0.245	1	0.245	0.132		
24	0.287	0.541	0.414	0.21	1	0.210	0.087		
25	0.258	0.413	0.336	0.124	1	0.124	0.042		
		Total			25	7.044	5.852		
Water Level	Depth (m)				0.500				
Total Area (A)		0.210						
Total Discha	rge (Q)		0.087						

(Tue)13-Oct-2020

(Tue)20-Oct-2020

	Determi	ning the Wa	ter Discharg	je (Q) from ci	urrent meter	readings			
Location:		Power Hou	ise						
Date:		(Tue)20-Oc	t-2020						
Weather:		Heavy Rair	ı						
River	Fle	ow Velocity (n	n/s)			Area	Discharge		
Width(m)	V1	v2	Mean	Depth (m)	Width (m)	(m²)	(m³/s)		
1	0.028	0.126	0.077	0.22	1	0.220	0.017		
2	0.622	0.835	0.729	0.248	1	0.248	0.181		
3	0.696	1.950	1.323	0.243	1	0.243	0.321		
4	0.640	0.876	0.758	0.266	1	0.266	0.202		
5	0.665	0.769	0.717	0.268	1	0.268	0.192		
6	0.632	0.729	0.681	0.292	1	0.292	0.199		
7	0.694	1.008	0.851	0.278	1	0.278	0.237		
8	0.726	1.147	0.937	0.285	1	0.285	0.267		
9	0.824	1.208	1.016	0.319	1	0.319	0.324		
10	0.812	1.154	0.983	0.369	1	0.369	0.363		
11	0.794	1.384	1.089	0.413	1	0.413	0.450		
12	0.721	1.264	0.993	0.401	1	0.401	0.398		
13	0.741	1.377	1.059	0.445	1	0.445	0.471		
14	0.754	1.228	0.991	0.481	1	0.481	0.477		
15	0.664	1.175	0.920	0.583	1	0.583	0.536		
16	0.740	1.291	1.016	0.627	1	0.627	0.637		
17	0.705	1.185	0.945	0.414	1	0.414	0.391		
18	0.722	1.026	0.874	0.42	1	0.420	0.367		
19	0.759	1.155	0.957	0.421	1	0.421	0.403		
20	0.811	0.991	0.901	0.466	1	0.466	0.420		
21	0.742	0.968	0.855	0.367	1	0.367	0.314		
22	0.526	1.026	0.776	0.392	1	0.392	0.304		
23	0.633	0.971	0.802	0.326	1	0.326	0.261		
24	0.493	0.791	0.642	0.415	1	0.415	0.266		
25	0.442	0.791	0.617	0.334	1	0.334	0.206		
26	0.432	0.576	0.504	0.249	1	0.249	0.125		
27	0.230	0.568	0.399	0.164	1	0.164	0.065		
		Total			27	9.706	8.394		
Water Level	Depth (m)				0.520				
Total Area (A)		9.706						
Total Discha	arge (Q)		8.394						

Dictoreo(m)	1	No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	31.0	34.0	31.0	31.0	32.0	31.8	1.57	0.67	33	30.19	47.40

(Tue)27-Oct-2020-Float measurement

(Tue)03-Nov-2020-Float measurement

	1	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	31.0	34.0	31.0	31.0	32.0	31.8	1.32	0.65	32	28.82	38.05

(Tue)17-Nov-2020-Float measurement

Distance(m)		No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	38.0	42.0	40.9	40.2	42.2	40.6	1.23	0.64	29	28.14	34.61

(Tue)29-Dec-2020-Float/TSS measurement

	1	No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	38.0	42.0	40.9	40.2	42.2	40.6	1.23	0.64	30	28.14	34.61

(Thu)14-Jan-2021-Float measurement

Distance(m)	I	No. Tria	ls (Time	e in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	30.2	29.4	31.4	30.2	30.9	30.4	1.64	0.65	32	28.82	47.27

(Tue)02-Feb-2021-Float measurement

Distance(m)	Γ	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	28.5	29.1	29.0	28.5	28.8	28.8	1.39	0.67	33	30.19	41.97

(Sat)13-Feb-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
8:30	40	30.32	28.05	34.38	28.37	29.69	30.16	1.33	0.61	26.00	26.08	34.59
9:30	40	30.72	26.75	26.59	33.36	27.79	29.04	1.38	0.63	26.00	26.77	36.87
10:30	40	29.69	29.28	27.41	29.65	26.90	28.59	1.40	0.63	26.00	26.77	37.45
11:30	40	25.97	28.84	31.56	27.66	31.56	29.12	1.37	0.63	26.00	26.77	36.77
12:30	40	27.66	31.96	29.16	29.41	28.25	29.29	1.37	0.63	26.00	27.45	37.49
13:30	40	29.09	27.85	27.72	29.13	27.72	28.30	1.41	0.63	26.00	27.45	38.80

(Sat)20-Feb-2021-TSS measurement

	Determi	ning the Wa	ter Discharg	e (Q) from c	urrent meter	r readings	
Location:		Power Hou	ise				
Date:		(Sat)20-Fe	b-2021				
Weather:		Isolated sh	owers				
River	Flow	w Velocity (m/s)	Depth	Width	Area	Discharge
Width(m)	V1	v2	Mean	(m)	(m)	(m ²)	(m ³ /s)
1	0.028	0.157	0.093	0.177	1	0.177	0.016
2	0.424	0.497	0.461	0.214	1	0.214	0.099
3	0.421	0.545	0.483	0.256	1	0.256	0.124
4	0.410	0.553	0.482	0.271	1	0.271	0.130
5	0.546	0.647	0.597	0.27	1	0.27	0.161
6	0.587	0.656	0.622	0.326	1	0.326	0.203
7	0.303	0.536	0.420	0.344	1	0.344	0.144
8	0.488	0.574	0.531	0.408	1	0.408	0.217
9	0.713	0.839	0.776	0.457	1	0.457	0.355
10	0.746	0.893	0.820	0.425	1	0.425	0.348
11	0.753	0.957	0.855	0.477	1	0.477	0.408
12	0.893	1.086	0.990	0.48	1	0.480	0.475
13	0.895	1.129	1.012	0.45	1	0.450	0.455
14	0.724	0.930	0.827	0.43	1	0.430	0.356
15	0.609	0.851	0.730	0.454	1	0.454	0.331
16	0.759	0.870	0.815	0.445	1	0.445	0.362
17	0.662	0.754	0.708	0.42	1	0.420	0.297
18	0.609	0.750	0.680	0.456	1	0.456	0.310
19	0.642	0.764	0.703	0.437	1	0.437	0.307
20	0.592	0.673	0.633	0.369	1	0.369	0.233
21	0.580	0.616	0.598	0.348	1	0.348	0.208
22	0.568	0.620	0.594	0.268	1	0.268	0.159
23	0.553	0.635	0.594	0.17	1	0.170	0.101
24	0.494	0.452	0.473	0.18	1	0.180	0.085
		Total			24	8.532	5.886
Water Level	Depth (m)				0.500		
Total Area (A	A)				8.532		
Total Discha	rge (Q)				5.886		

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
9:00	50	30.84	27.28	30.41	28.78	27.81	29.02	1.72	0.71	27.00	32.94	56.74
10:00	50	28.50	28.97	29.37	28.12	28.28	28.65	1.75	0.72	27.00	33.62	58.68
11:00	50	29.47	27.48	29.74	28.88	26.68	28.45	1.76	0.72	27.00	33.62	59.09
12:00	50	29.94	25.79	25.28	29.19	28.32	27.70	1.80	0.73	27.00	34.31	61.92
13:00	50	28.25	28.38	28.81	25.69	26.78	27.58	1.81	0.74	27.00	34.99	63.43
14:00	50	26.78	26.57	26.28	26.56	27.18	26.67	1.87	0.75	27.00	35.77	67.05

(Sat)27-Feb-2021-Float measurement

(Sat)06-Mar-2021-Float measurement

Time	Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
9:00	50	25.00	24.00	25.00	25.00	25.00	24.80	2.02	0.75	27.00	35.77	72.12
10:00	50	23.00	23.00	24.00	23.00	24.00	23.40	2.14	0.75	27.00	35.85	76.61
11:00	50	24.00	24.00	23.00	23.00	23.00	23.40	2.14	0.76	27.00	36.66	78.34
12:00	50	24.00	24.00	22.00	22.00	23.00	23.00	2.17	0.76	27.00	36.66	79.70
13:00	50	23.00	23.00	22.00	23.00	23.00	22.80	2.19	0.78	27.00	38.28	83.95
14:00	50	22.00	20.00	22.00	23.00	22.00	21.80	2.29	0.79	27.00	39.09	89.66

(Fri)11-Jun-2021-Float measurement

T :	Distance No. Trials (Time in Sec.)			Mean	Velocity	Depth	Width	Area	Discharge			
Time	(m)	1	2	3	4	5	Time (s)	(m/s)	(m)	(m)	(m²)	(Q)
14:00	35	32.39	28.53	33.11	33.53	29.65	31.44	1.11	0.37	21.50	11.38	12.67
14:30	35	30.39	28.79	30.21	27.01	30.76	29.43	1.19	0.40	21.50	12.87	15.31

Site 4. TONY River

(Tue)07-Jul-2020

	Determir	ning the Wa	ter Discharge	e (Q) from c	urrent meter	r readings			
Location:		Tony River							
Date:		(Tue)07-Jul	-2020						
Weather:		Fine							
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.137	0.283	0.210	0.141	1	0.141	0.030		
2	0.354	0.563	0.459	0.201	1	0.201	0.092		
3	0.398	0.634	0.516	0.229	1	0.229	0.118		
4	0.43	0.473	0.452	0.258	1	0.258	0.116		
5	0.520	0.702	0.611	0.271	1	0.271	0.166		
6	0.352	0.711	0.532	0.323	1	0.323	0.172		
7	0.333	0.734	0.534	0.350	1	0.35	0.187		
8	0.547	0.632	0.590	0.450	1	0.450	0.265		
9	0.544	0.700	0.622	0.423	1	0.423	0.263		
10	0.546	0.746	0.646	0.416	1	0.416	0.269		
		Total			10	3.062	1.678		
Water Level Depth (m)				0.450					
Total Area (A)		3.062						
Total Discha	rge (Q)				1.678				

	Determi	ning the Wa	ter Discharg	e (Q) from c	urrent meter	readings		
Location:		Tony River						
Date:		(Tue)14-Ju	-2020					
Weather:		Fine						
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge	
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)	
1	0.11	0.261	0.186	0.147	1	0.147	0.027	
2	0.265	0.416	0.341	0.163	1	0.163	0.056	
3	0.265	0.500	0.383	0.196	1	0.196	0.075	
4	0.367	0.536	0.452	0.216	1	0.216	0.098	
5	0.414	0.575	0.495	0.219	1	0.219	0.108	
6	0.419	0.677	0.548	0.247	1	0.247	0.135	
7	0.421	0.640	0.531	0.295	1	0.295	0.156	
8	0.429	0.645	0.537	0.341	1	0.341	0.183	
9	0.435	0.641	0.538	0.336	1	0.336	0.181	
10	0.438	0.647	0.543	0.327	1	0.327	0.177	
		Total			10	2.487	1.197	
Water Level	Depth (m)		0.400					
Total Area (/	4)		2.487					
Total Discha	rge (Q)				1.197			

(Tue)14-Jul-2020

(Tue)04-Aug-2020

	Determi	ning the Wa	ter Discharg	e (Q) from c	urrent meter	r readings			
Location:		Tony River							
Date:		(Tue)04-Au	ıg-2020						
Weather:		Fine (Dry v	veather)						
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.063	0.119	0.091	0.175	1	0.175	0.016		
2	0.159	0.214	0.187	0.119	1	0.119	0.022		
3	0.228	0.330	0.279	0.257	1	0.257	0.072		
4	0.391	0.436	0.414	0.249	1	0.249	0.103		
5	0.441	0.494	0.468	0.261	1	0.261	0.122		
6	0.531	0.464	0.498	0.354	1	0.354	0.176		
7	0.414	0.679	0.547	0.406	1	0.406	0.222		
8	0.345	0.541	0.443	0.331	1	0.331	0.147		
9	0.358	0.465	0.412	0.276	1	0.276	0.114		
10	0.443	0.470	0.457	0.348	1	0.348	0.159		
		Total			10	2.776	1.152		
Water Level Depth (m)				0.400					
Total Area (A)		2.776						
Total Discha	rge (Q)				1.152				

(Tue)25-Aug-2020

	Determir	ning the Wat	ter Dischargo	e (Q) from c	urrent meter	readings				
Location:		Tony River								
Date:		(Tue)25-Au	(Tue)25-Aug-2020							
Weather:	_	Isolated Sh	owers (No F	looding)						
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge			
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.101	0.156	0.129	0.123	1	0.123	0.016			
2	0.142	0.225	0.184	0.168	1	0.168	0.031			
3	0.243	0.321	0.282	0.227	1	0.227	0.064			
4	0.328	0.390	0.359	0.333	1	0.333	0.120			
5	0.389	0.504	0.447	0.351	1	0.351	0.157			
6	0.353	0.553	0.453	0.361	1	0.361	0.164			
7	0.372	0.542	0.457	0.335	1	0.335	0.153			
8	0.33	0.505	0.418	0.293	1	0.293	0.122			
9	0.297	0.427	0.362	0.288	1	0.288	0.104			
10	0.295	0.351	0.323	0.155	1	0.155	0.050			
		Total			10	2.63	0.98			
Water Level Depth (m)				0.360						
Total Area (A)		2.634							
Total Discha	rge (Q)				0.980					
(Tue)01-Sep-2020

	Determir	ning the Wat	ter Discharge	e (Q) from c	urrent meter	r readings			
Location:		Tony River							
Date:		(Tue)01-Se	p-2020						
Weather:		Isolated Sh	owers (No F	looding)					
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.081	0.137	0.109	0.131	1	0.131	0.014		
2	0.133	0.277	0.205	0.206	1	0.206	0.042		
3	0.211	0.307	0.259	0.232	1	0.232	0.060		
4	0.289	0.392	0.341	0.304	1	0.304	0.104		
5	0.362	0.470	0.416	0.335	1	0.335	0.139		
6	0.398	0.514	0.456	0.348	1	0.348	0.159		
7	0.469	0.550	0.510	0.305	1	0.305	0.155		
8	0.355	0.485	0.420	0.294	1	0.294	0.123		
9	0.289	0.434	0.362	0.283	1	0.283	0.102		
10	0.266	0.408	0.337	0.285	1	0.285	0.096		
		Total			10	2.72	1.00		
Water Level	Depth (m)		0.390						
Total Area (A	A)		2.723						
Total Discha	rge (Q)		0.995						

1

(Wed)07-Oct-2020

	Determi	ning the Wa	ter Discharg	e (Q) from c	urrent meter	r readings			
Location:		Tony River							
Date:		(Wed)07-0	ct-2020						
Weather:		Isolated Sh	owers (No F	looding)					
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge		
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.107	0.16	0.134	0.118	1	0.118	0.016		
2	0.133	0.262	0.198	0.275	1	0.275	0.054		
3	0.234	0.312	0.273	0.284	1	0.284	0.078		
4	0.237	0.36	0.299	0.295	1	0.295	0.088		
5	0.271	0.437	0.354	0.357	1	0.357	0.126		
6	0.314	0.456	0.385	0.431	1	0.431	0.166		
7	0.399	0.493	0.446	0.432	1	0.432	0.193		
8	0.409	0.499	0.454	0.415	1	0.415	0.188		
9	0.496	0.516	0.506	0.376	1	0.376	0.190		
10	0.425	0.515	0.470	0.298	1	0.298	0.140		
11	0.314	0.383	0.349	0.22	1	0.22	0.077		
		Total			11	3.50	1.32		
Water Level	Depth (m)				0.430				
Total Area (A	4)				3.501				
Total Discha	rge (Q)		1.316						

(Tue)13-Oct-2020

	Determining the Water Discharge (Q) from current meter readings											
Location:		Tony River										
Date:		(Tue)13-Oc	:t-2020									
Weather:		Isolated Sh	owers (Sign	s of flooding	j)							
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge					
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)					
1	0.095	0.124	0.110	0.104	1	0.104	0.011					
2	0.145	0.266	0.206	0.125	1	0.125	0.026					
3	0.31	0.302	0.306	0.253	1	0.253	0.077					
4	0.359	0.43	0.395	0.284	1	0.284	0.112					
5	0.387	0.444	0.416	0.346	1	0.346	0.144					
6	0.374	0.458	0.416	0.430	1	0.43	0.179					
7	0.381	0.472	0.427	0.435	1	0.435	0.186					
8	0.407	0.501	0.454	0.432	1	0.432	0.196					
9	0.436	0.432	0.434	0.377	1	0.377	0.164					
10	0.368	0.416	0.392	0.353	1	0.353	0.138					
11	0.256	0.272	0.264	0.352	1	0.352	0.093					
		Total			11	3.49	1.33					
Water Level	Depth (m)		0.440									
Total Area (A)				3.491							
Total Discha	rge (Q)		1.326									

(Sat)13-Feb-2021-Float measurement

Distance	ance No. Trials (Time in Sec.)						Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	55.64	53.25	52.35	58.06	52.76	43.9	1.14	0.40	15	10.57	12.04
50	50.22	52.22	52.03	59.27	50.53	36.3	1.38	0.41	15	10.86	14.94
50	52.81	50.47	49.24	50.74	50.28	34.6	1.45	0.41	15	10.92	15.80

(Sat)20-Feb-2021-Float measurement

Distance		No. Tria	ls (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	60.07	60.17	60.00	60.10	60.05	48.1	1.04	0.40	15	10.51	10.93
50	60.50	55.00	57.53	55.69	60.02	38.9	1.29	0.42	15	11.74	15.10

50	57.55	58.25	59.87	58.22	59.01	39.8	1.26	0.41	15	11.15	14.02

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	48.00	55.00	51.00	51.00	51.00	41.0	1.22	0.41	17.5	11.15	13.60
50	52.00	53.00	53.00	51.00	54.00	35.5	1.41	0.43	17.5	12.33	17.35
50	54.00	54.00	52.00	54.00	53.00	36.4	1.37	0.44	17.5	12.91	17.75

(Sat)27-Feb-2021-Float measurement

(Sat)06-Mar-2021-Float measurement

Distance		No. Tria	ls (Time	e in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	32.00	34.00	33.00	33.00	33.00	26.4	1.89	0.48	18	15.26	28.91
50	34.00	34.00	53.00	34.00	34.00	26.4	1.90	0.48	18	15.38	29.18
50	54.00	33.00	33.00	34.00	33.00	26.2	1.97	0.48	18	15.50	30.59

(Sat)13-Mar-2021-Float measurement

Distance	Distance No. Trials (Time in Sec.)						Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	60.05	60.03	61.07	60.28	59.33	48.3	1.22	0.41	15.2	11.15	13.59
50	60.04	60.31	60.13	60.72	60.60	48.2	1.04	0.41	15.4	11.33	11.74
50	59.54	59.68	59.42	59.23	60.60	47.6	1.05	0.42	15.5	11.45	12.03

(Sun)14-Mar-2021

	Determining the Water Discharge (Q) from current meter readings											
Location:		Tony River										
Date:		(Sun)14-M	ar-2020									
Weather:		Isolated Sh	owers (Sign	s of flooding	J)							
River	Flo	w Velocity (m/s)	Depth	Width	Area	Discharge					
Width(m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)					
1	0.177	0.204	0.191	0.302	1	0.302	0.058					
2	0.197	0.311	0.254	0.466	1	0.466	0.118					
3	0.297	0.51	0.404	0.527	1	0.527	0.213					
4	0.32	0.574	0.447	0.539	1	0.539	0.241					
5	0.328	0.54	0.434	0.522	1	0.522	0.227					
6	0.367	0.553	0.460	0.503	1	0.503	0.231					
7	0.415	0.596	0.506	0.464	1	0.464	0.235					
8	0.357	0.657	0.507	0.377	1	0.377	0.191					
9	0.384	0.683	0.534	0.292	1	0.292	0.156					
10	0.361	0.686	0.524	0.313	1	0.313	0.164					
11	0.414	0.774	0.594	0.387	1	0.387	0.230					
		Total			11	4.69	2.06					
Water Level	Depth (m)		0.440									
Total Area (A	4)				4.692							
Total Discha	rge (Q)		2.063									

(Tue)23-Mar-2021-Float measurement

Distance	nce No. Trials (Time in Sec.)						Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	59.21	59.13	59.06	59.56	59.54	47.4	1.06	0.49	21.50	15.85	16.72
50	60.09	60.13	60.02	60.75	60.47	48.2	1.04	0.47	21.25	14.68	15.22
50	60.09	60.50	60.67	60.04	60.45	48.3	1.04	0.46	21.00	14.09	14.60

(Wed)24-Mar-2021-Float measurement

Distance	No. Trials (Time in Sec.)				Mean	Velocity	Depth	Width	Area	Discharge	
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	60.95	60.73	60.34	60.74	60.09	48.6	1.03	0.40	16	10.57	10.88

٦

Site 5. Vuramali Village

(Mon)29-Jun-2020

	Deter	mining the W	ater Discharg	e (Q) from cur	rrent meter re	adings	
Location:		Vuramali					
Date:		(Mon)29-Ju	n-2020				
Weather:		Isolated Sho	owers & Thur	der storms (af	ter over night	t flood)	
River	Flo	Flow Velocity (m/s)					Discharge
Width(m)	V1	v2	Mean	Depth (m)	Width (m)	Area (m ²)	(m³/s)
1	0.068	0.042	0.055	0.055	1	0.055	0.003
2	0.073	0.113	0.093	0.110	1	0.110	0.010
3	0.201	0.142	0.172	0.151	1	0.151	0.026
4	0.228	0.128	0.178	0.200	1	0.200	0.036
5	0.26	0.131	0.196	0.213	1	0.213	0.042
6	0.289	0.134	0.212	0.244	1	0.244	0.052
7	0.235	0.151	0.193	0.237	1	0.237	0.046
8	0.348	0.206	0.277	0.307	1	0.307	0.085
9	0.328	0.328	0.328	0.357	1	0.357	0.117
10	0.535	0.484	0.510	0.434	1	0.434	0.221
11	0.51	0.462	0.486	0.467	1	0.467	0.227
12	0.487	0.58	0.534	0.477	1	0.477	0.254
13	0.491	0.346	0.419	0.458	1	0.458	0.192
14	0.292	0.523	0.408	0.442	1	0.442	0.180
15	0.479	0.602	0.541	0.470	1	0.470	0.254
16	0.615	0.369	0.492	0.453	1	0.453	0.223
17	0.506	0.479	0.493	0.441	1	0.441	0.217
18	0.473	0.575	0.524	0.404	1	0.404	0.212
19	0.05	0.147	0.099	0.404	1	0.404	0.040
20	0.021	0.303	0.162	0.371	1	0.371	0.060
21	0.641	0.677	0.659	0.342	1	0.342	0.225
22	0.137	0.408	0.273	0.339	1	0.339	0.092
23	0.393	0.442	0.418	0.333	1	0.333	0.139
24	0.221	0.394	0.308	0.191	1	0.191	0.059
25	0.268	0.307	0.288	0.169	1	0.169	0.049
26	0.346	0.235	0.291	0.143	1	0.143	0.042
27	0.185	0.265	0.225	0.153	1	0.153	0.034
28	0.267	0.139	0.203	0.132	1	0.132	0.027
29	0.223	0.245	0.234	0.066	1	0.066	0.015
30	0.309	0.372	0.341	0.081	1	0.081	0.028
31	0.215	0.347	0.281	0.133	1	0.133	0.037
32	0.251	0.334	0.293	0.131	1	0.131	0.038
33	0.264	0.364	0.314	0.148	1	0.148	0.046

34	0.487	0.302	0.395	0.160	1	0.160	0.063	
35	0.297	0.514	0.406	0.153	1	0.153	0.062	
36	0.364	0.401	0.383	0.145	1	0.145	0.055	
37	0.463	0.468	0.466	0.110	1	0.110	0.051	
38	0.352	0.352	0.352	0.103	1	0.103	0.036	
39	0.328	0.358	0.343	0.108	1	0.108	0.037	
40	0.340	0.309	0.325	0.125	1	0.125	0.041	
41	0.257	0.403	0.330	0.161	1	0.161	0.053	
42	0.513	0.448	0.481	0.144	1	0.144	0.069	
43	0.312	0.29	0.301	0.148	1	0.148	0.045	
44	0.362	0.349	0.356	0.131	1	0.131	0.047	
45	0.347	0.359	0.353	0.116	1	0.116	0.041	
46	0.249	0.281	0.265	0.103	1	0.103	0.027	
47	0.274	0.248	0.261	0.084	1	0.084	0.022	
48	0.231	0.251	0.241	0.078	1	0.078	0.019	
49	0.168	0.205	0.187	0.052	1	0.052	0.010	
50	0.203	0.198	0.201	0.056	1	0.056	0.011	
		Total			50	11.033	4.017	
Water Level Depth (m)		0.477						
Total Area (A)			11.033					
Total Discharge (Q)			4.017					

(Thu)02-Jul-2020-TSS measurement

	Detern	nining the Wa	ter Discharge	(Q) from curr	ent meter rea	dings				
Location:		Vuramali								
Date:		(Thu)02-Jul-2020								
Weather:		Isolated Sho	wers & Thund	ler storms (af	ter over night	flood)				
River	Flo	w Velocity (m	ı/s)	Depth	Width	Area	Discharge			
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)			
1	0.109	0.115	0.112	0.094	1	0.094	0.011			
2	0.154	0.221	0.188	0.14	1	0.14	0.026			
3	0.231	0.287	0.259	0.179	1	0.179	0.046			
4	0.225	0.384	0.305	0.228	1	0.228	0.069			
5	0.278	0.417	0.348	0.29	1	0.29	0.101			
6	0.385	0.565	0.475	0.226	1	0.226	0.107			
7	0.418	0.593	0.506	0.273	1	0.273	0.138			
8	0.578	0.725	0.652	0.325	1	0.325	0.212			
9	0.544	0.756	0.650	0.332	1	0.332	0.216			
10	0.587	0.887	0.737	0.404	1	0.404	0.298			
11	0.607	1.037	0.822	0.469	1	0.469	0.386			

12	0.985	1.037	1.011	0.562	1	0.562	0.568
13	0.988	1.039	1.014	0.52	1	0.52	0.527
14	0.784	1.015	0.900	0.554	1	0.554	0.498
15	0.789	1.016	0.903	0.623	1	0.623	0.562
16	0.818	0.820	0.819	0.557	1	0.557	0.456
17	0.79	0.943	0.867	0.688	1	0.688	0.596
18	0.627	0.816	0.722	0.609	1	0.609	0.439
19	0.694	0.890	0.792	0.555	1	0.555	0.440
20	0.678	0.872	0.775	0.584	1	0.584	0.453
21	0.728	0.816	0.772	0.593	1	0.593	0.458
22	0.759	0.805	0.782	0.482	1	0.482	0.377
23	0.614	0.737	0.676	0.440	1	0.44	0.297
24	0.554	0.646	0.600	0.356	1	0.356	0.214
25	0.712	0.606	0.659	0.439	1	0.439	0.289
26	0.498	0.740	0.619	0.388	1	0.388	0.240
27	0.559	0.740	0.650	0.351	1	0.351	0.228
28	0.406	0.739	0.573	0.358	1	0.358	0.205
29	0.341	0.737	0.539	0.277	1	0.277	0.149
30	0.336	0.654	0.495	0.247	1	0.247	0.122
31	0.505	0.656	0.581	0.259	1	0.259	0.150
32	0.363	0.603	0.483	0.263	1	0.263	0.127
33	0.381	0.633	0.507	0.216	1	0.216	0.110
34	0.384	0.572	0.478	0.388	1	0.388	0.185
35	0.351	0.383	0.367	0.226	1	0.226	0.083
36	0.481	0.607	0.544	0.203	1	0.203	0.110
37	0.472	0.522	0.497	0.189	1	0.189	0.094
38	0.364	0.471	0.418	0.207	1	0.207	0.086
39	0.317	0.362	0.340	0.193	1	0.193	0.066
40	0.312	0.335	0.324	0.208	1	0.208	0.067
41	0.345	0.375	0.360	0.210	1	0.21	0.076
42	0.347	0.377	0.362	0.192	1	0.192	0.070
43	0.283	0.350	0.317	0.174	1	0.174	0.055
44	0.292	0.360	0.326	0.169	1	0.169	0.055
	Total				44	15.240	10.063
Water Level Depth (m)		0.688					
Total Area (A)		15.240					
Total Discha	rge (Q)	10.063					

(Tue)04-Aug-2020

	Deter	mining the W	ater Discharg	e (Q) from cur	rent meter re	adings	
Location:		Vuramali					
Date:		(Tue)04-Aug	-2020				
Weather:		Fine (Dry we	eather)				
River	Flo	ow Velocity (m	n/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.105	0.129	0.117	0.096	1	0.096	0.011
2	0.141	0.192	0.167	0.131	1	0.131	0.022
3	0.106	0.188	0.147	0.218	1	0.218	0.032
4	0.189	0.222	0.206	0.31	1	0.31	0.064
5	0.255	0.344	0.300	0.406	1	0.406	0.122
6	0.261	0.388	0.325	0.426	1	0.426	0.138
7	0.331	0.408	0.370	0.425	1	0.425	0.157
8	0.246	0.407	0.327	0.495	1	0.495	0.162
9	0.36	0.523	0.442	0.501	1	0.501	0.221
10	0.324	0.589	0.457	0.472	1	0.472	0.215
11	0.424	0.523	0.474	0.466	1	0.466	0.221
12	0.489	0.528	0.509	0.440	1	0.44	0.224
13	0.414	0.636	0.525	0.42	1	0.42	0.221
14	0.425	0.610	0.518	0.396	1	0.396	0.205
15	0.434	0.625	0.530	0.322	1	0.322	0.170
16	0.484	0.593	0.539	0.360	1	0.36	0.194
17	0.474	0.582	0.528	0.398	1	0.398	0.210
18	0.488	0.626	0.557	0.343	1	0.343	0.191
19	0.372	0.577	0.475	0.390	1	0.39	0.185
20	0.392	0.631	0.512	0.378	1	0.378	0.193
21	0.374	0.619	0.497	0.335	1	0.335	0.166
22	0.347	0.563	0.455	0.291	1	0.291	0.132
23	0.3	0.535	0.418	0.230	1	0.23	0.096
24	0.286	0.427	0.357	0.198	1	0.198	0.071
25	0.224	0.419	0.322	0.169	1	0.169	0.054
26	0.202	0.408	0.305	0.145	1	0.145	0.044
27	0.23	0.293	0.262	0.127	1	0.127	0.033
28	0.226	0.240	0.233	0.126	1	0.126	0.029
29	0.224	0.231	0.228	0.126	1	0.126	0.029
30	0.136	0.225	0.181	0.130	1	0.13	0.023
31	0.125	0.207	0.166	0.104	1	0.104	0.017
32	0.121	0.204	0.163	0.263	1	0.263	0.043
33	0.114	0.175	0.145	0.216	1	0.216	0.031
34	0.102	0.172	0.137	0.388	1	0.388	0.053

Total	34	10.241	3.981	
Water Level Depth (m)		0.450		
Total Area (A)		10.241		
Total Discharge (Q)		3.981		

(Tue)25-Aug-2020

	Deter	mining the W	/ater Discharg	e (Q) from cur	rent meter re	adings	
Location:		Vuramali					
Date:		(Tue)25-Aug	g-2020				
Weather:		Fine (Dry w	eather)				
River	Fle	ow Velocity (n	n/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.131	0.185	0.158	0.095	1	0.095	0.015
2	0.152	0.194	0.173	0.163	1	0.163	0.028
3	0.264	0.289	0.277	0.194	1	0.194	0.054
4	0.292	0.365	0.329	0.284	1	0.284	0.093
5	0.327	0.534	0.431	0.301	1	0.301	0.130
6	0.377	0.575	0.476	0.346	1	0.346	0.165
7	0.38	0.598	0.489	0.346	1	0.346	0.169
8	0.344	0.572	0.458	0.4	1	0.4	0.183
9	0.373	0.599	0.486	0.416	1	0.416	0.202
10	0.39	0.684	0.537	0.422	1	0.422	0.227
11	0.45	0.692	0.571	0.435	1	0.435	0.248
12	0.561	0.713	0.637	0.440	1	0.44	0.280
13	0.532	0.721	0.627	0.415	1	0.415	0.260
14	0.525	0.655	0.590	0.388	1	0.388	0.229
15	0.541	0.689	0.615	0.4	1	0.4	0.246
16	0.502	0.680	0.591	0.404	1	0.404	0.239
17	0.514	0.592	0.553	0.353	1	0.353	0.195
18	0.502	0.618	0.560	0.329	1	0.329	0.184
19	0.421	0.606	0.514	0.307	1	0.307	0.158
20	0.325	0.518	0.422	0.300	1	0.3	0.126
21	0.301	0.427	0.364	0.257	1	0.257	0.094
22	0.311	0.436	0.374	0.213	1	0.213	0.080
23	0.3	0.474	0.387	0.199	1	0.199	0.077
24	0.283	0.434	0.359	0.168	1	0.168	0.060
25	0.286	0.386	0.336	0.172	1	0.172	0.058
26	0.22	0.350	0.285	0.158	1	0.158	0.045
27	0.235	0.313	0.274	0.142	1	0.142	0.039
28	0.198	0.301	0.250	0.075	1	0.075	0.019
29	0.177	0.299	0.238	0.074	1	0.074	0.018

30	0.161	0.269	0.215	0.055	1	0.055	0.012	
31	0.142	0.212	0.177	0.065	1	0.065	0.012	
32	0.101	0.216	0.159	0.064	1	0.064	0.010	
		Total			32	8.380	3.953	
Water Level	Depth (m)				0.430			
Total Area (A	A)				8.380			
Total Discha	rge (Q)		3.953					

(Tue)01-Sep-2020

	Deter	mining the W	ater Discharg	e (Q) from cu	rrent meter re	adings	
Location:		Vuramali					
Date:		(Tue)01-Sep	-2020				
Weather:		Fine (Dry we	eather)				
River	Flo	ow Velocity (m	ı/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.161	0.217	0.189	0.098	1	0.098	0.019
2	0.168	0.258	0.213	0.152	1	0.152	0.032
3	0.27	0.301	0.286	0.233	1	0.233	0.067
4	0.29	0.412	0.351	0.295	1	0.295	0.104
5	0.402	0.496	0.449	0.322	1	0.322	0.145
6	0.456	0.497	0.477	0.357	1	0.357	0.170
7	0.482	0.505	0.494	0.377	1	0.377	0.186
8	0.386	0.592	0.489	0.428	1	0.428	0.209
9	0.53	0.628	0.579	0.419	1	0.419	0.243
10	0.586	0.640	0.613	0.422	1	0.422	0.259
11	0.59	0.663	0.627	0.442	1	0.442	0.277
12	0.534	0.543	0.539	0.421	1	0.421	0.227
13	0.488	0.598	0.543	0.413	1	0.413	0.224
14	0.42	0.686	0.553	0.451	1	0.451	0.249
15	0.409	0.627	0.518	0.446	1	0.446	0.231
16	0.355	0.706	0.531	0.443	1	0.443	0.235
17	0.353	0.711	0.532	0.364	1	0.364	0.194
18	0.355	0.605	0.480	0.337	1	0.337	0.162
19	0.403	0.643	0.523	0.369	1	0.369	0.193
20	0.378	0.563	0.471	0.341	1	0.341	0.160
21	0.341	0.530	0.436	0.294	1	0.294	0.128
22	0.286	0.465	0.376	0.174	1	0.174	0.065
23	0.352	0.457	0.405	0.168	1	0.168	0.068
24	0.251	0.441	0.346	0.134	1	0.134	0.046
25	0.248	0.355	0.302	0.124	1	0.124	0.037
26	0.178	0.345	0.262	0.12	1	0.12	0.031

27	0.132	0.384	0.258	0.111	1	0.111	0.029	
28	0.129	0.362	0.246	0.121	1	0.121	0.030	
29	0.112	0.342	0.227	0.111	1	0.111	0.025	
30	0.094	0.328	0.211	0.098	1	0.098	0.021	
31	0.112	0.295	0.204	0.097	1	0.097	0.020	
32	0.122	0.211	0.167	0.094	1	0.094	0.016	
		Total			32	8.78	4.10	
Water Level	Depth (m)		0.450					
Total Area (A	A)		8.776					
Total Discha	rge (Q)		4.101					

(Wed)07-Oct-2020

	Deter	mining the W	ater Discharg	e (Q) from cu	rrent meter re	adings			
Location:		Vuramali							
Date:		(Wed)07-Oc	t-2020						
Weather:		Isolated sho	wer (River Co	(River Condition: After flooding)					
River	Flo	Flow Velocity (m/s)		Depth	Width	Area	Discharge		
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)		
1	0.132	0.220	0.176	0.064	1	0.064	0.011		
2	0.183	0.305	0.244	0.096	1	0.096	0.023		
3	0.273	0.455	0.364	0.097	1	0.097	0.035		
4	0.331	0.551	0.441	0.13	1	0.13	0.057		
5	0.355	0.593	0.474	0.203	1	0.203	0.096		
6	0.356	0.589	0.473	0.387	1	0.387	0.183		
7	0.412	0.686	0.549	0.424	1	0.424	0.233		
8	0.520	0.810	0.665	0.428	1	0.428	0.285		
9	0.516	0.864	0.690	0.435	1	0.435	0.300		
10	0.528	0.896	0.712	0.478	1	0.478	0.340		
11	0.564	0.941	0.753	0.448	1	0.448	0.337		
12	0.574	0.957	0.766	0.537	1	0.537	0.411		
13	0.556	0.927	0.742	0.605	1	0.605	0.449		
14	0.559	0.918	0.739	0.511	1	0.511	0.377		
15	0.556	0.927	0.742	0.571	1	0.571	0.423		
16	0.542	0.901	0.722	0.583	1	0.583	0.421		
17	0.496	0.827	0.662	0.478	1	0.478	0.316		
18	0.475	0.794	0.635	0.567	1	0.567	0.360		
19	0.447	0.745	0.596	0.434	1	0.434	0.259		
20	0.420	0.700	0.560	0.426	1	0.426	0.239		
21	0.458	0.763	0.611	0.337	1	0.337	0.206		
22	0.451	0.751	0.601	0.391	1	0.391	0.235		
23	0.436	0.576	0.506	0.331	1	0.331	0.167		

24	0.395	0.585	0.490	0.292	1	0.292	0.143			
25	0.342	0.570	0.456	0.27	1	0.27	0.123			
26	0.326	0.544	0.435	0.244	1	0.244	0.106			
27	0.304	0.507	0.406	0.249	1	0.249	0.101			
28	0.291	0.485	0.388	0.205	1	0.205	0.080			
29	0.262	0.437	0.350	0.202	1	0.202	0.071			
30	0.240	0.400	0.320	0.186	1	0.186	0.060			
31	0.254	0.423	0.339	0.176	1	0.176	0.060			
32	0.233	0.388	0.311	0.163	1	0.163	0.051			
33	0.175	0.292	0.234	0.162	1	0.162	0.038			
34	0.133	0.222	0.178	0.141	1	0.141	0.025			
35	0.136	0.226	0.181	0.121	1	0.121	0.022			
36	0.133	0.221	0.177	0.104	1	0.104	0.018			
37	0.124	0.203	0.164	0.097	1	0.097	0.016			
38	0.104	0.173	0.139	0.094	1	0.094	0.013			
39	0.102	0.155	0.129	0.091	1	0.091	0.012			
		Total			39	11.76	6.70			
Water Level	Depth (m)		0.600							
Total Area (A)		11.758							
Total Discha	rge (Q)		6.701							

(Tue)13-Oct-2020

	Deter	mining the W	ater Discharg	e (Q) from cu	rrent meter re	adings	
Location:		Vuramali					
Date:		(Tue)13-Oct-	2020				
Weather:		Rain & Wind	ł				
River	Flo	w Velocity (m	ı/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.088	0.110	0.099	0.093	1	0.093	0.009
2	0.093	0.141	0.117	0.131	1	0.131	0.015
3	1.010	0.169	0.590	0.167	1	0.167	0.098
4	0.298	0.497	0.398	0.329	1	0.329	0.131
5	0.321	0.651	0.486	0.359	1	0.359	0.174
6	0.316	0.770	0.543	0.379	1	0.379	0.206
7	0.347	0.809	0.578	0.438	1	0.438	0.253
8	0.384	0.855	0.620	0.388	1	0.388	0.240
9	0.380	0.850	0.615	0.414	1	0.414	0.255
10	0.416	0.951	0.684	0.458	1	0.458	0.313
11	0.342	0.803	0.573	0.538	1	0.538	0.308
12	0.368	0.848	0.608	0.554	1	0.554	0.337
13	0.458	0.947	0.703	0.608	1	0.608	0.427

14	0.386	0.857	0.622	0.559	1	0.559	0.347			
15	0.461	0.951	0.706	0.503	1	0.503	0.355			
16	0.306	0.882	0.594	0.508	1	0.508	0.302			
17	0.438	0.922	0.680	0.476	1	0.476	0.324			
18	0.478	0.847	0.663	0.435	1	0.435	0.288			
19	0.314	0.767	0.541	0.397	1	0.397	0.215			
20	0.374	0.841	0.608	0.364	1	0.364	0.221			
21	0.328	0.785	0.557	0.341	1	0.341	0.190			
22	0.309	0.761	0.535	0.336	1	0.336	0.180			
23	0.270	0.588	0.429	0.271	1	0.271	0.116			
24	0.220	0.525	0.373	0.235	1	0.235	0.088			
25	0.372	0.590	0.481	0.301	1	0.301	0.145			
26	0.268	0.585	0.427	0.233	1	0.233	0.099			
27	0.222	0.653	0.438	0.218	1	0.218	0.095			
28	0.279	0.599	0.439	0.211	1	0.211	0.093			
29	0.105	0.506	0.306	0.191	1	0.191	0.058			
30	0.127	0.521	0.324	0.185	1	0.185	0.060			
31	0.146	0.432	0.289	0.168	1	0.168	0.049			
32	0.157	0.446	0.302	0.140	1	0.14	0.042			
33	0.142	0.428	0.285	0.134	1	0.134	0.038			
34	0.135	0.294	0.215	0.093	1	0.093	0.020			
35	0.094	0.292	0.193	0.112	1	0.112	0.022			
36	0.081	0.226	0.154	0.105	1	0.105	0.016			
37	0.904	0.255	0.580	0.090	1	0.09	0.052			
38	0.086	0.232	0.159	0.085	1	0.085	0.014			
		Total	38 11.55 6.20							
Water Level	Depth (m)		0.600							
Total Area (A	A)		11.547							
Total Discha	rge (Q)		6.195							

(Tue)27-Oct-2020-Float measurement

Distance (m)	1	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	28.0	28.0	29.0	28.0	28.0	28.2	1.78	0.50	27.5	40.18	71.38

(Tue)03-Nov-2020-Float measurement

Distance(m)	I	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	26.0	27.0	25.0	25.0	24.0	25.4	1.96	0.48	25.5	37.83	74.32

Distance(m)	I	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m) 1 2 3 4 5		5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)			
50	28.1	32.0	30.8	30.9	32.0	30.8	1.62	0.45	24.5	34.30	55.68

(Tue)17-Nov-2020-Float/TSS measurement

(Tue)29-Dec-2020-Float measurement

Distance(m)	I	No. Tria	ls (Time	in Sec.)	Mean	Velocity	Depth	Width	Area	Discharge
Distance(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	37.5	33.3	29.5	26.7	21.1	29.6	1.68	0.48	26	37.24	62.65

(Sat)13-Feb-2021-Float measurement

Distance		No. Tria	als (Time	e in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
40	22.56	20.89	24.60	23.94	22.75	22.9	1.74	0.47	26	37.00	64.50
40	20.93	21.00	20.85	21.40	21.97	21.2	1.88	0.44	26	33.12	62.41
40	21.82	22.72	21.42	20.57	20.79	21.5	1.86	0.47	26	33.12	61.72

(Sat)20-Feb-2021-Float measurement

Distance		No. Tria	als (Time	e in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	42.29	38.27	39.32	39.90	40.76	40.1	1.25	0.47	30	36.65	45.69
50	31.59	31.33	30.98	35.02	33.05	32.4	1.54	0.43	30	31.94	49.31
50	32.87	37.01	31.58	32.42	31.50	33.1	1.51	0.45	30	34.30	51.85

(Sat)27-Feb-2021-Float measurement

Distance		No. Tria	ls (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	25.0	27.0	25.0	27.0	27.0	26.2	1.91	0.49	35	39.00	74.44
50	26.0	26.0	27.0	25.0	24.0	25.6	1.95	0.50	35.5	39.59	77.33
50	24.0	27.0	27.0	26.0	23.0	25.4	1.97	0.51	35.5	41.36	81.41

(Sat)06-Mar-2021-Float measurement

Distance	nce No. Trials (Time in Sec.)						Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	20.0	22.0	22.0	21.0	21.0	21.2	2.36	0.65	37.5	57.83	136.39
50	21.0	21.0	20.0	22.0	21.0	21.0	2.38	0.67	36.5	60.18	143.30
50	20.0	21.0	18.0	28.0	19.0	21.2	2.45	0.62	29	53.71	131.65

(Sat)13-Mar-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	42.47	38.44	38.56	36.66	33.07	37.8	1.32	0.57	29	48.42	63.98
50	36.03	36.13	35.22	39.44	29.91	35.3	1.41	0.65	29	57.83	81.81

50	39.75	32.34	39.32	37.66	28.56	35.5	1.41	0.60	29	51.95	73.11
50	40.25	36.06	39.22	38.5	31.6	37.1	1.35	0.55	29	46.06	62.04

(Sun)14-Mar-2021-Float measurement

Distance		No. Tria	ls (Time	e in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	40.25	38.69	37.1	38.1	31	37.0	1.35	0.60	29	51.95	70.15
50	30.88	32.1	36.82	32.4	35.53	33.5	1.49	0.56	29	47.24	70.41
50	29.75	33.25	38	31.34	37.65	34.0	1.47	0.56	29	47.59	70.00

(Tue)23-Mar-2021-Float measurement

Distance		No. Tria	ls (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	57.39	56.72	56.32	54.31	50.16	55.0	0.91	0.60	29	51.95	47.06

(Wed)24-Mar-2021-Float measurement

Distance		No. Tria	ls (Time	e in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	45.12	47.78	46.95	46.91	48.12	47.0	1.06	0.62	29	53.71	57.17
50	48.82	49.38	47.29	46.5	48.06	48.0	1.04	0.62	29	53.71	55.94
50	46.6	45.45	45.13	47.19	47.81	46.4	1.08	0.62	29	54.30	58.47

(Fri)26-Mar-2021-Float measurement

Distance	e No. Trials (Time in Sec.)					Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	44.67	45.33	46.28	46.39	45.47	45.6	1.10	0.63	29	55.48	60.79
50	45.86	46.12	46.52	46.23	45.64	46.1	1.09	0.62	29	54.30	58.93
50	46.29	45.43	45.44	47.31	46.66	46.2	1.08	0.62	29	54.30	58.73

(Sat)27-Mar-2021-Float measurement

Distance		No. Trials (Time in Sec.)					Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	46	45	45	46	45	45.4	1.10	0.64	29	56.65	62.39
50	46	46	47	46	46	46.2	1.08	0.62	29	54.30	58.77
50	45	46	46	45	46	45.6	1.10	0.63	29	55.48	60.83

Site 6. Ngalimbiu Bridge

Г

(Mon)29-Jun-2020-TSS measurement

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings	
Location:		Ngalimbiu	Bridge				
Date:		(Mon)29-Ju	ın-2020				
Weather:		Isolated Sh	owers & Thu	under storms	s (after over	night flood)	
River	Flow	w Velocity (n	n/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.122	0.127	0.125	0.070	1	0.070	0.009
2	0.202	0.133	0.168	0.105	1	0.105	0.018
3	0.206	0.160	0.183	0.200	1	0.200	0.037
4	0.290	0.154	0.222	0.278	1	0.278	0.062
5	0.387	0.274	0.331	0.445	1	0.445	0.147
6	0.269	0.181	0.225	0.575	1	0.575	0.129
7	0.112	0.356	0.234	0.580	1	0.580	0.136
8	0.203	0.290	0.247	0.622	1	0.622	0.153
9	0.321	0.311	0.316	0.598	1	0.598	0.189
10	0.475	0.415	0.445	0.580	1	0.580	0.258
11	0.470	0.538	0.504	0.751	1	0.751	0.379
12	0.356	0.706	0.531	0.871	1	0.871	0.463
13	0.302	0.508	0.405	0.798	1	0.798	0.323
14	0.565	0.500	0.533	0.904	1	0.904	0.481
15	0.472	0.669	0.571	0.875	1	0.875	0.499
16	0.495	0.761	0.628	0.808	1	0.808	0.507
17	0.523	0.753	0.638	0.859	1	0.859	0.548
18	0.230	0.355	0.293	0.804	1	0.804	0.235
19	0.183	0.183	0.183	0.447	1	0.447	0.082
		Total			19	11.170	4.654
Water Level	Depth (m)				0.904		
Total Area ((A)				11.170		
Total Discha	arge (Q)				4.654		

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings		
Location:		Ngalimbiu	Bridge					
Date:		(Tue)04-Au	g-2020					
Weather:		Fine (Dry w	/eather)					
River	Flow	w Velocity (n	n/s)	Depth	Width	Area	Discharge	
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)	
1	0.146	0.198	0.172	0.043	1	0.043	0.007	
2	0.195	0.200	0.198	0.195	1	0.195	0.039	
3	0.268	0.202	0.235	0.322	1	0.322	0.076	
4	0.164	0.346	0.255	0.388	1	0.388	0.099	
5	0.246	0.348	0.297	0.544	1	0.544	0.162	
6	0.273	0.409	0.341	0.651	1	0.651	0.222	
7	0.287	0.416	0.352	0.811	1	0.811	0.285	
8	0.256	0.495	0.376	0.685	1	0.685	0.257	
9	0.338	0.514	0.426	0.788	1	0.788	0.336	
10	0.324	0.599	0.462	0.709	1	0.709	0.327	
11	0.478	0.659	0.569	0.735	1	0.735	0.418	
12	0.513	0.715	0.614	0.902	1	0.902	0.554	
13	0.528	0.727	0.628	0.797	1	0.797	0.500	
14	0.465	0.640	0.553	0.715	1	0.715	0.395	
15	0.344	0.617	0.481	0.609	1	0.609	0.293	
16	0.279	0.580	0.430	0.602	1	0.602	0.259	
17	0.272	0.483	0.378	0.561	1	0.561	0.212	
18	0.192	0.358	0.275	0.490	1	0.490	0.135	
19	0.182	0.218	0.200	0.314	1	0.314	0.063	
		Total			19	10.861	4.637	
Water Level	Depth (m)				0.900			
Total Area (A)			10.861					
Total Discha	arge (Q)				4.637			

(Tue)04-Aug-2020

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings	
Location:		Ngalimbiu	Bridge				
Date:		(Tue)25-Au	g-2020				
Weather:		Isolated Sh	ower (No flo	ooding)			
River	Flov	w Velocity (n	n/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m ³ /s)
1	0.115	0.131	0.123	0.028	1	0.028	0.003
2	0.136	0.181	0.159	0.141	1	0.141	0.022
3	0.150	0.233	0.192	0.305	1	0.305	0.058
4	0.194	0.276	0.235	0.549	1	0.549	0.129
5	0.227	0.313	0.270	0.565	1	0.565	0.153
6	0.376	0.451	0.414	0.822	1	0.822	0.340
7	0.340	0.410	0.375	0.742	1	0.742	0.278
8	0.427	0.485	0.456	0.828	1	0.828	0.378
9	0.352	0.534	0.443	0.866	1	0.866	0.384
10	0.558	0.667	0.613	0.798	1	0.798	0.489
11	0.516	0.714	0.615	0.779	1	0.779	0.479
12	0.503	0.760	0.632	0.668	1	0.668	0.422
13	0.412	0.618	0.515	0.553	1	0.553	0.285
14	0.490	0.637	0.564	0.484	1	0.484	0.273
15	0.458	0.564	0.511	0.403	1	0.403	0.206
16	0.407	0.563	0.485	0.475	1	0.475	0.230
17	0.401	0.495	0.448	0.434	1	0.434	0.194
18	0.333	0.433	0.383	0.317	1	0.317	0.121
19	0.244	0.328	0.286	0.335	1	0.335	0.096
		Total			19	10.092	4.540
Water Level	Depth (m)				0.800		
Total Area ((A)				10.092		
Total Discha	arge (Q)				4.540		

(Tue)25-Aug-2020

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings		
Location:		Ngalimbiu	Bridge					
Date:		(Tue)01-Se	p-2020					
Weather:		Isolated Sh	ower (No flo	ooding)				
River	Flov	w Velocity (r	n/s)	Depth	Width	Area	Discharge	
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)	
1	0.106	0.289	0.198	0.126	1	0.126	0.025	
2	0.225	0.395	0.310	0.230	1	0.230	0.071	
3	0.294	0.446	0.370	0.388	1	0.388	0.144	
4	0.319	0.473	0.396	0.357	1	0.357	0.141	
5	0.339	0.553	0.446	0.463	1	0.463	0.206	
6	0.357	0.557	0.457	0.544	1	0.544	0.249	
7	0.388	0.612	0.500	0.614	1	0.614	0.307	
8	0.407	0.585	0.496	0.688	1	0.688	0.341	
9	0.429	0.581	0.505	0.714	1	0.714	0.361	
10	0.485	0.631	0.558	0.767	1	0.767	0.428	
11	0.429	0.647	0.538	0.805	1	0.805	0.433	
12	0.437	0.684	0.561	0.777	1	0.777	0.436	
13	0.405	0.673	0.539	0.738	1	0.738	0.398	
14	0.388	0.586	0.487	0.789	1	0.789	0.384	
15	0.324	0.567	0.446	0.536	1	0.536	0.239	
16	0.266	0.515	0.391	0.585	1	0.585	0.228	
17	0.191	0.462	0.327	0.441	1	0.441	0.144	
18	0.133	0.326	0.230	0.374	1	0.374	0.086	
19	0.122	0.275	0.199	0.226	1	0.226	0.045	
		Total			19	10.16	4.67	
Water Level	Depth (m)				0.800			
Total Area (A)		10.162					
Total Discha	arge (Q)				4.666			

(Tue)01-Sep-2020

	Determin	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings	
Location:		Ngalimbiu	Bridge				
Date:		(Wed)07-O	ct-2020				
Weather:		Isolated Sh	ower (River	condition: af	fter flood)		
River	Flo	w Velocity (n	n/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.127	0.204	0.166	0.135	1	0.135	0.022
2	0.175	0.364	0.270	0.221	1	0.221	0.060
3	0.226	0.394	0.310	0.443	1	0.443	0.137
4	0.202	0.402	0.302	0.304	1	0.304	0.092
5	0.246	0.473	0.360	0.581	1	0.581	0.209
6	0.320	0.507	0.414	0.838	1	0.838	0.347
7	0.426	0.627	0.527	0.912	1	0.912	0.480
8	0.471	0.623	0.547	0.852	1	0.852	0.466
9	0.531	0.672	0.602	0.877	1	0.877	0.528
10	0.554	0.735	0.645	0.910	1	0.910	0.586
11	0.606	0.827	0.717	1.134	1	1.134	0.813
12	0.623	0.922	0.773	0.833	1	0.833	0.643
13	0.582	0.864	0.723	0.718	1	0.718	0.519
14	0.563	0.816	0.690	0.776	1	0.776	0.535
15	0.440	0.661	0.551	0.748	1	0.748	0.412
16	0.380	0.549	0.465	0.669	1	0.669	0.311
17	0.338	0.533	0.436	0.649	1	0.649	0.283
18	0.323	0.437	0.380	0.427	1	0.427	0.162
19	0.292	0.423	0.358	0.348	1	0.348	0.124
20	0.098	0.291	0.195	0.262	1	0.262	0.051
		Total			20	12.64	6.78
Water Level	Depth (m)				1.00		
Total Area ((A)				12.64		
Total Discha	arge (Q)				6.78		

(Wed)07-Oct-2020

	Determir	ning the Wat	er Discharge	e (Q) from cu	urrent meter	readings	
Location:		Ngalimbiu	Bridge				
Date:		(Tue)13-Oc	t-2020				
Weather:		Rain & Wir	nd				
River	Flov	w Velocity (n	n/s)	Depth	Width	Area	Discharge
Width (m)	V1	v2	Mean	(m)	(m)	(m²)	(m³/s)
1	0.095	0.234	0.165	0.151	1	0.151	0.025
2	0.124	0.355	0.240	0.167	1	0.167	0.040
3	0.107	0.340	0.224	0.212	1	0.212	0.047
4	0.173	0.342	0.258	0.335	1	0.335	0.086
5	0.123	0.439	0.281	0.615	1	0.615	0.173
6	0.220	0.614	0.417	0.779	1	0.779	0.325
7	0.314	0.804	0.559	0.834	1	0.834	0.466
8	0.305	0.857	0.581	0.898	1	0.898	0.522
9	0.325	0.762	0.544	0.869	1	0.869	0.472
10	0.403	0.835	0.619	1.020	1	1.020	0.631
11	0.374	0.728	0.551	0.846	1	0.846	0.466
12	0.323	0.828	0.576	0.941	1	0.941	0.542
13	0.334	0.946	0.640	0.822	1	0.822	0.526
14	0.301	0.862	0.582	0.746	1	0.746	0.434
15	0.224	0.766	0.495	0.725	1	0.725	0.359
16	0.233	0.649	0.441	0.677	1	0.677	0.299
17	0.214	0.636	0.425	0.632	1	0.632	0.269
18	0.218	0.537	0.378	0.378	1	0.378	0.143
19	0.109	0.411	0.260	0.318	1	0.318	0.083
20	0.103	0.319	0.211	0.305	1	0.305	0.064
		Total	r.		20	12.27	5.97
Water Level	Depth (m)				1.00		
Total Area ((A)				12.27		
Total Discha	arge (Q)				5.97		

(Tue)13-Oct-2020

(Tue)20-Oct-2020-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	24.0	24.0	30.0	31.0	30.0	27.8	1.80	1.6	22	35.2	63.31

(Tue)27-Oct-2020-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	24.0	23.0	21.0	19.0	20.0	21.4	2.34	1.75	22.5	39.4	92.00

(Tue)03-Nov-2020-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	22.0	22.0	20.0	21.0	21.0	21.2	2.36	1.75	23.5	41.1	97.06

(Tue)17-Nov-2020-Float/TSS measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	28.3	29.7	26.6	30.8	29.3	28.9	1.73	1.5	23.5	35.3	60.93

(Tue)29-Dec-2020-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	25.3	27.2	25.3	25.9	21.9	25.1	1.99	1.7	23.5	40.0	79.56

(Thu)14-Jan-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	21.3	19.2	19.3	20.1	20.9	20.1	2.48	1.8	24	43.2	107.31

(Tue)02-Feb-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	21.3	23.1	20.3	21.0	18.9	20.9	2.39	1.8	25	45.0	107.64

(Sat)13-Feb-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	26.4	27.1	24.9	27.1	25.5	26.2	1.91	1.61	23	37.0	70.70
50	28.32	28.67	28.37	26.94	29.58	28.4	1.76	1.63	23	37.5	66.06
50	28.23	26.08	27.62	20.09	28.37	26.1	1.92	1.65	23	38.0	72.76

(Sat)20-Feb-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	38.0	42.0	39.0	41.0	43.0	40.6	1.23	1.50	27.5	41.3	50.80
50	45.0	46.0	37.0	42.0	39.0	41.8	1.20	1.51	27.5	41.5	49.67
50	39.0	42.0	39.0	39.0	40.0	39.8	1.26	1.52	27.5	41.8	52.51

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	25.0	27.0	25.0	27.0	27.0	26.2	1.91	1.20	35	42.0	80.15
50	26.0	26.0	27.0	25.0	24.0	25.6	1.95	1.22	35.5	43.3	84.59
50	24.0	27.0	27.0	26.0	23.0	25.4	1.97	1.25	35.5	44.4	87.35

(Sat)27-Feb-2021-Float measurement

(Sat)06-Mar-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	18.0	18.0	19.0	20.0	19.0	18.8	2.66	1.80	29	52.2	138.83
50	18.0	18.0	18.0	19.0	18.0	18.2	2.75	1.85	29	53.7	147.39
50	20.0	21.0	21.0	19.0	21.0	20.4	2.45	1.50	37.0	55.5	136.03

(Sat)13-Mar-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	24.97	26.19	25.41	26.85	23.06	25.3	1.98	1.40	37.5	52.5	103.77
50	25.38	25.94	26.66	28.03	25.62	26.3	1.90	1.45	36.5	52.9	100.52
50	22.01	23.52	27.65	25.35	26.28	25.0	2.00	1.47	37.0	54.4	108.95
50	23.70	21.19	21.06	20.88	21.95	21.8	2.30	1.49	37.0	55.1	126.70

(Sun)14-Mar-2021-Float measurement

Distance	No. Trials (Time in Sec.)					Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	31.59	37.56	36.1	35.06	35.06	35.1	1.43	1.58	29	45.8	65.32
50	22.42	23.34	23.49	25.22	23.58	23.6	2.12	1.40	37.5	52.5	111.18
50	20.78	19.8	21.16	22.15	23.52	21.5	2.33	1.45	36.5	52.9	123.18
50	21.3	19.1	18.5	18.8	19.6	19.5	2.57	1.50	37.0	55.5	142.63

(Tue)23-Mar-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	36.59	37.45	37.12	35.34	36.56	36.6	1.37	1.15	37.5	43.1	58.89

(Wed)24-Mar-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	37.93	36.52	36.28	34.18	30.61	35.1	1.42	1.16	37.5	43.5	61.96
50	35.21	37.87	36.19	36.59	38.21	36.8	1.36	1.15	37.5	43.1	58.57
50	38.28	39.82	37.92	36.5	38.6	38.2	1.31	1.14	37.5	42.8	55.92

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	26.47	27.85	25.75	25.53	26.37	26.4	1.89	1.23	37.5	46.1	87.38
50	26.38	27.09	27.45	26.96	27.45	27.1	1.85	1.21	37.5	45.4	83.82
50	27.64	25.79	27.3	26.55	26.83	26.8	1.86	1.21	37.5	45.4	84.59

(Fri)26-Mar-2021-Float measurement

(Sat)27-Mar-2021-Float measurement

Distance		No. Tria	als (Time	in Sec.)		Mean	Velocity	Depth	Width	Area	Discharge
(m)	1	2	3	4	5	Time(s)	(m/s)	(m)	(m)	(m²)	(Q)
50	27	25	27	28	39	29.2	1.71	1.20	37.5	45.0	77.05
50	25	27	26	26	27	26.2	1.91	1.24	37.5	46.5	88.74
50	25	28	25	24	27	25.8	1.94	1.25	37.5	46.9	90.84

Date:

un.

Appendix-7 Geochemical Lab Report

SITE 1 Upstream	Elements/ Names	PPM (Part per Million)	Feldspar Composition in % (KA1S1308 CaA12Si20) Estinated	Quartz Compositi on in % (S102) Estimated
	KPotassium	4138	and and an and a second second	
	P- Phosphorus	1228		
	S- Sulfure	891		
	Ca - Calcium	4.05%		
	Ti - Thallium	2426		
	Mn - Manganese	710		
	Fe- Iron	4.43%		
	Cu- Copper	81	12.06%	15%
	Zn - Zinc	57	NUMBER OF	- Stenn
	Rb - Rubidium	14		
	Sr - Tin	438		
_	Y- Yttrium	15		
	Zr - Zirconium	69		
_	Ba - Barium	233		
	W - Tungsten	46		
	Th- Thorium	7		
-	Al - Aluminium	1.76%		
	51- Silicon	5.91%		
SITE 2 Base Dam	Elements	PPM		
1000 mentione	KPotassium	3962		
	P- Phosphorus	1630		
	S- Sulfur	1138		
	Ca - Calcium	3.60%		110000
	Ti - Thallium	3793		11313
	Mn - Manganese	635		151 3

	Fe- Iron	5.57%	153	181
	Cu- Copper	213	a contradi	1
	Zn - Zinc	74		
	Rb - Rubidium	13		
	Sr - Tin	432		
	Y- Yttrium	14		
	Zr - Zirconium	74		
	Ba = Barium	289		
	Ni-Nickel	116		
	Nb-Niobium	4		
	Al - aluminium	1.69%		
5.7 S.C.3	Si- Silicon	6.43%		
STTE 3	EI ENENTS	POW / Part		
POWER	ecentary.	Per		
HOUSE		Hillion)		
	KPotassium	4375		
	S- Sulfur	881		
	Ca - Calcium	3.93%		
	Ti - Thallium	2142		
	Mn - Manganese	576		
	Fe- Iron	4.05%		
	Cu- Copper	123	15%	163
	Zn - Zinc	61		
	Rb - Rubidium	12	_	
	Sr - Tin	484		
	Y- Yttrium	13		
	Zr - Zirconium	71		
	Ba - Barium	232		
	Nb - Niobium	2		
	AL - aluminium	1.943		
	Si- Silicon	6.59%		
SITE 4 Vuramali	ELEMENTS	РРМ		
	K - Potassium	4284		
	S - Sulfur	1826		
	Ca- Calcium	5.28%		
	Ti - Thallium	2239		
	Mn-	614	14%	18%
2 (1996) (1996)	Fe - Iron	4.00%		1
	Cu- Copper-	88		1105
	Zn - Zinc	57		1187
	Rb - Rubidium	13		115
	Sr . Tin	461		

CONSULTS

Y - Yttrium	15	
Zr - Zirconium	63	
 Ba - Barium	229	
AL - aluminium	2.03%	
Si - Silicon	6.33%	

Site 5 Ngalimbiu Bridge	ELEMENTS	PPM * (Part Per Million)		
	K - Potassium	4188		
	P - Phosphorus	973		
	S - Sulfur	886		
	Ca - Calcium	3.34%		
	Ti - Thallium	2727		
	Mn - Manganese	709		
	Fe - Iron	4.28%	12%	18%
	CU - Copper	66	1 - 10.00	
	Zn - Zinc	66		
	Rb - Rubidium	14		
	Sr - Tin	448		
	Y - Yttrium	13		
	Zr - Zirconium	64		
	Nb - Niobium	2		
	Ba - Barium	236		
	AL - Aluminium	2.17%		
	Si - Silicon	6.85%		

Meaning *

1 ppm = 1gram/tonne 10,000 ppm = 1%

			all all the second
Analyst by	John Ramo Laboratory Technician	Approval by lab Supervisor	Anton Argisiramo
Sign	CONSISTER STREET, SP	Sign	No Hour Mill
Date	27/11/2020	Date	27/11/2020

Appendix-8 Particle size Distribution Reports

File CDS File C'Allocel Reports/CD6 Particle Size Distribution +15mm No Hillle Issue 2 June 2008 CL

Form CDb Fela C/Eared Reports/CDb Facture Size Distribution + 1 from From Riffles Joans 2 from 2008 CL

Form C06 File Chilssoni Reported DN Particle Size Distribution --Theat Ove Riffle Issue 3 June 2008 CL

Form C06 File C. Gaud Reports/OH: Particle Ster Distribution - Weam No Bills have 2 June 2008 CL

The C06 File C5Excel Reports/C06 Particle New Distribution +19mm No Eiffie Issue 2 June 2008 CL

Appendix-9 Laboratory Testing Photos

-Lab Photos for Geochemical Lab Procedure and Testing

1. Samples finely crushed and ready to be placed inside **Ball Mill Machine** for **pulverisation**.

2. The Samples were then pressed using Hydraulic handy press.

3. Testing of Samples in progress Using Innovax XRF 50KV Compatible Analytical Machine.

- Particle size Distribution (Sieve Analysis) Test Lab Photos

Appendix-10 Proposed Hydrological Monioring Plan (For Upstream & Downstream of Dam During Construction)

In the pre-construction and under-construction stages, flow monitoring and sediment surveys will be conducted both upstream (Site A) and downstream (Site B) of the dam site, and a temporary water level gauging station against flooding during construction will be installed upstream of the upstream cofferdam (Site C). And the AWS (Automatic Weather Station) will be installed at the batch plant site (Site D) to provide real-time weather information during the RCC dam construction.

HEC plans to install a flow gauging station at Site A and an automatic water level gauging station at Site B prior to commencement of construction works in order to collect continuous data.

Besides automatic monitoring by installing gauging stations, additional measurement by using rod floats will be conducted at Site A and Site B and corresponding comparison with automatic gauging data and re-establishment or adjustment of the stage-discharge relationship for Site B will be made.

At Site A and B, under high flow condition, HEC plans to collect sediment samples at the center, left and right of the river width by help of a cableway (steel wire rope) hanging across the river. Sampling schedule will be on a regular basis, e.g. weekly, and/or on an event basis.

Information on the above flow, sediment and weather monitoring at pre-/under-construction stage is summarized in the table below.

Sito	Location ¹⁾	Monitoring					Monitoring Poriode	Pomarka
Sile		Items	<u>Devices</u>	Nos.	Auto/Manual	Flow Condition	Monitoring Periods	Remarks
Site A. Upstream of Dam	Approx. 0.6km	Water level	Ultrasonic level sensor	1	<u>Auto</u>	Low to high	Feb.2022 (Automatic) ~	To continue automatic
	upstream of dam	Water velocity	Radar velocity sensor	<u>1</u>	<u>Auto</u>	Low to high	Before initial reservoir	monitoring of water level
	(outside of backwater		Rod floats	-	Manual	Low to High	filling	throughout construction
<u></u>	influence of coffer	Sediment	Sediment sampler	1	Manual	Low to high		To install a cableway across
	dam reservoir for							the river width for sediment
	discharges up to							<u>sampling</u>
	<u>320m³/s to 350m³/s)</u>							
Site B	Approx. 0.5km	Water level	Pressure type level sensor	<u>2</u>	<u>Auto</u>	Low to high	Feb.2022 (Automatic) ~	To continue automatic
Downstream	<u>downstream of dam</u>			<u>(1set)</u>			Until completion of	monitoring of water level
of Dam	<u>(existing site)</u>	Water velocity	Rod floats	<u>1</u>	<u>Manual</u>	Low to High	<u>construction</u>	throughout construction
								To install a cableway across
		Sediment	Sediment sampler	<u>1</u>	<u>Manual</u>	Low to high		the river width for sediment
								<u>sampling</u>
Site C	Upstream of	Water level	Pressure type level sensor	<u>2</u>	<u>Auto</u>	1	<u>Feb.2022 (Automatic) ~</u>	Temporary use during
Upstream	<u>upstream cofferdam</u>			<u>(1set)</u>			<u>Before initial reservoir</u>	construction against
Cofferdam							filling	emergency evacuations
								(Early warning system)
Site D. Dam site	Dam site	AWS	(Automatic Weather Station)	<u>1set</u>	<u>Auto</u>	<u>Continuous</u>	After completion of	Initially to be installed at the
	<u>(Batch Plant)</u>	- Temperature	Metal sheath type				batch plant construction	office site, then moved to
		- Rainfall	Conduction type					Site D after batch plant
		- Wind speed	Optical chopper type					construction

¹⁾ Final locations of Sites A, B, C and D may differ from those proposed here. Final locations will be determined through site surveys.

Figure. Schematic of monitoring plan in the pre-construction and under-construction stages